Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Trigonometry, Exercícios de Engenharia Civil

Lista de exercícios

Tipologia: Exercícios

2013

Compartilhado em 05/01/2013

josimar-batista-9
josimar-batista-9 🇧🇷

4.8

(15)

37 documentos

1 / 16

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Content marketed & distributed by FaaDoOEngineers.com
TRIGONOMETRY
[ BASIC, EQUATIONS, INVERSE, SOLUTION OF Δ ,HT & DISTANCES]
By:- Nishant Gupta
For any help contact:
9953168795, 9268789880
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Pré-visualização parcial do texto

Baixe Trigonometry e outras Exercícios em PDF para Engenharia Civil, somente na Docsity!

TRIGONOMETRY

[ BASIC, EQUATIONS, INVERSE, SOLUTION OF Δ ,HT & DISTANCES]

By:- Nishant Gupta

For any help contact:

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

BASICS

Some Formulae

Sin 3 A A 3

ASin 3

SinASin (^)  

Cos 3 A A 3

A Cos 3

CosACos (^)  

  1. A Tan 3 A 3

ATan 3

TanATan (^)  

  1. tan+ tan   

  3 tan 3 3

tan 3

5. A 3 / 2

A Sin 3

Sin A Sin 2 2 2  

6. Sin( A B)SinA B SinA Sin B

2 2    

7. Cos( A B)Cos A B CosA SinB

2 2    

2 SinA

Sin 2 A CosACos 2 ACos 4 A...........nterms n

n 

n 2

2 n 1

n ........cos 2 n 1

cos 2 n 1

cos 2 n 1

cos  

  1. In a triangle ABC

TanATanBTanC TanATanBTanC &

C

Cot 2

B

Cot 2

A

Cot 2

C

Cot 2

B

Cot 2

A

Cot   

  1. Sin  + Sin(  + ) + Sin(  + 2) + ……+ Sin(  + n  1 ) =

Sin

n }Sin 2

n 1 Sin{

TRIGONOMETRY

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

  1. sin-1(–x) = – sin-1x cosec-1^ (–x)= – cosec-1x sec-1^ (–x) = π – sec-1x

tan-1(–x) = – tan-1x cot-1^ (–x) = π – cot-1x cos-1(–x) = π – cos-1x

  1. tan-1x + tan-1y = tan- 1 xy

x y

(^) , x y < 1 = π + tan- 1 xy

x y

(^) , x y > 1, x > 0

= - π + tan- 1 xy

x y

(^) , x y > 1,x < 0

= π / 2 , x y = 1 , x > 0 = - π / 2 , x y = 1 , x < 0

  1. tan-1x - tan-1y = tan- 1 xy

x y

(^) , x y > -1 = π + tan- 1 xy

x y

(^) , x y < -1 , x > 0

= - π + tan- 1 xy

x y

(^) , x y < -1 , x < 0

= π/2 , x y = -1 , x > 0 = - π / 2 , x y = -1 , x < 0

  1. sin-1x + sin-1y = sin- 

2 2 (^) x 1 y y 1 x 0 or (x y > 0 & x (^2) +y (^2) 1)

= π – sin- 

2 2 (^) x 1 y y 1 x if x & y > 0 & x (^2) +y (^2) > 1

= - π – sin

  • 

2 2 x 1 y y 1 x if x & y < 0 & x^2 +y^2 >

  1. sin-1x- sin-1y =sin- 

2 2 (^) x 1 y y 1 x if xy 0 or (x y) > 0 & x (^2) +y (^2)  1

= π – sin- 

2 2 (^) x 1 y y 1 x if x> 0 & y < 0 & x (^2) +y (^2) > 1

= - π – sin- 

2 2 (^) x 1 y y 1 x if y > 0 &x < 0 & x (^2) +y (^2) > 1

  1. cos-1x +cos-1y =cos-1[xy 1 x 1 y ] 2 2 (^)    if -1 x, y 1 , x + y  0

= 2π - cos -1[xy 1 x 1 y ] 2 2 (^)    if -1 x, ,y 1 , x + y  0

  1. cos-1x _^ cos-1y =cos-1[xy 1 x 1 y ] 2 2 (^)    if -1  x, y 1 , x y

= - cos-1[xy 1 x 1 y ] 2 2 (^)    if -1 y 0 , 0 x 1 , x  y

  1. 2 sin-1x = sin- 

2 (^2) x 1 x if - 1/√2 x 1/√

= π - sin- 

2 (^2) x 1 x if 1/ √2  x  1

= - π - sin- 

2 (^2) x 1 x if -1  x - 1/√

  1. 2cos-1x = cos-1[2x^2 -1] if 0  x  1 = 2π - cos-1[2x^2 – 1] if -1 x  0
  2. 3sin-1x = sin-1[3x-4x^3 ] , if -1/2 x 1/

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

= π - sin-1^ [3x – 4x^3 ] if 1/2 < x  1 = - π - sin-1^ [3x – 4x^3 ] if -1 x < - 1/

  1. 3cos-1x = cos-1[4x^3 – 3x] , if 1/2 x  1

= 2 π - cos

  • [4x 3 - 3x] , if - 1/2 x (^) 1/2 = 2 π + cos - [4x 3 - 3x] if -1 x (^) - 1/

Cosine rule

(i) Cos A = 2 bc

b c a

2 2 2  

(ii) Cos B = 2 ac

a c b 2 2 2  

(iii) Cos C = 2 ab

b a c 2 2 2  

  1. Projection Formulae

(iv) a = b cosC + c cosB

(v) b = c cosA + a cosC

(vi) c = a cosB + b cosA

  1. Napier’s Analogy

(a) 2

C

Cot a b

a b

2

A B

Tan 

(b) 2

A

Cot b c

b c

2

B C

Tan 

(c) 2

B

Cot c a

c a

2

C A

Tan 

  1. Semi Sum Formulae

(a) bc

(s b)(s c)

2

A

Sin

(b) bc

s(s a)

2

A

Cos

(c) s(s a)

(s b)(s c)

2

A

Tan 

  1. Area of Triangle ABC is caSinB 2

bcSinA 2

abSinC 2

  1. Let R, r, r 1 , r 2 , r 3 be radii of circumcircle, incircle, excircles ofABC then

(a) 2 SinC

c

2 SinB

b

2 SinA

a R   

(b) 

abc R s

r

(c) s a

r 1 

s b

r 2 

s c

r 3 

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

BASIC

  1. Which of the following is true

(a) tan 2 > tan 2 (b) sin 2 > sin 2

(c) cos 2 > cos 2 (d) N/T

  1. Which of the following is true

(a) sin 1 <sin 2 < sin 3

(b) sin 3 < sin 2 < sin 1

(c) sin 2 <sin 1 < sin 3

(d) sin 3 < sin 1 < sin 2

  1. Number of solutions of sin^8 x = 1+ tan^4 x

(a) 0 (b) l

(c) 4 (d) N/T

  1. Smallest +ve x satisfying

log (^) cos xsinxlogsinxcosx 2

(a) π/2 (b) π /

(c) π /4 (d) π /

  1. If tan-1^ ( sin^2 x ) > 1 then x

(a) ( 1/√2 , 1) (b) ( 0, 1/√2 )

(c) ( -1 , -1/√2 ) U ( 1/√2 , 1) (d) N/T

  1. Number of solutions of | √3 cos x – sinx |  2

In [ 0 , 4π ]

(a) 5 (b) 4

(c) ∞ (d) N/T

  1. General solution of sin^40 x – cos^40 x = 1 is

(a) nπ + π /3 (b) nπ + π /

(c) 2nπ + π /3 (d) 2nπ + π /

  1. Number of solutions of [ sinx ] = cosx , x [ 0 , 100 π ] is

(a) 1 (b) 2

(c) 3 (d) 0

  1. If cosx = cosy & sinx = - siny then sin 2006x+ sin2006y is

(a) 0 (b) 2006

(c) information insufficient

(d) N/T

  1. If x = 2  2  2  2 cos then x is

(a) 2 cos 10^0 (b) 2 cos 20^0

(c) 2 cos 40^0 (d) 2 cos 80^0

  1. If 4n = , then the value of tan  tan 2 tan

3  tan 4 …… tan (2n – 2)  tan(2n – 1) is equal to

(a) 0 (b) 1

(c) – 1 (d) N/T

  1. If sec  and cosec  are the roots of x^2 - px + q = 0, then

(a) p^2 = q(q – 2) (b) p^2 = q(q + 2)

(c) p^2 + q^2 = 2q (d) N/T

cos 11

cos 11

cos 11

cos 11

cos

(a) 0 (b) – 1/

ASSIGNMENT

TRIGONOMETRY

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

(c) 1/3 (d) N/T

cos 6 6 cos 4 15 cos 2 10

cos 7 7 cos 5 21 cos 3 35 cos

   

is equal to

(a) 2 cos (^)  (b) cos

(c) 2

cos (^)  (d) N/T

1 cos 8

1 cos 8

1 cos 8

1 cos is

(a) 2

(b) cos 8

(c) 8

(d) 2 2

  1. sin^2 8

sin 8

sin 8

sin 8

(^) is

(a) 2 (b) 0

(c) 1 (d) N/T

  1. If sin A + sin B = 0= cos A + cos B , then

cos 2A + cos 2B is equal to

(a) -2sin ( A + B) (b) 2sin ( A + B)

(c) -2cos ( A + B) (d) 2cos ( A + B).

  1. In a triangle ^   2

C

sin 2

B

sin 2

A

cos 2 2 2

(a) 2

C

cos 2

B

cos 2

A

2 sin (b) 2

C

sin 2

B

sin 2

A

2 cos

(c) 2

C

sin 2

B

sin 2

A

2 sin (d) N/T

  1. If tan A is integral solution of 4x^2 – 16x + 15 <

0 and cos B is slope of bisector of first quardrant then sin (A + B) sin (A - B) =

(a) 4/5 (b) – 4/

(c) 1/5 (d) N/T

..........nterms n

sin n

sin n

sin

(a) n/2 (b) 2n/

(c) 1 (d) N/T

  1. If 

2 sin

then 2 cot 4

is

(a) 1 + cot  (b) – (1 + cot  )

(c) 1 - cot  (d) - 1 + cot .

  1. If y =  

sec tan

sec tan 2

2 , then

(a) y 3 3

  (b)  

y

(c) – 3 < y <– 3

(d) N/T

  1. If an angle  is divided into two parts A and B such that A – B = x and tan A : tan B = k : 1, then sin x is

(a)  

sin k 1

k 1 (b)  

sin k 1

k

(c)  

sin k 1

k 1 (d) N/T

  1. The equation a sin x + b cos x = c, where | c | >

2 2 a b has

(a) a unique solution

(b) Infinite number of solutions.

(c) No solution

(d) None of these.

  1. Maximum of 3+ , 4

2 cos x 4

sin x  

 is

(a) 5 (b) 6

(c) 7 (d) N/T

  1. If A = cos^2  + sin^4  then for all , A 

(a) [1, 2] (b) [13/16, 1]

(c) [3/4, 13/16] (d) N/T

  1. Equation sin^6 x + cos^6 x = , has a solution if

(a)  

(b)  

(c)  1 , 1  (d) 

  1. Minimum f ( x ) =( 3sinx - 4 cos x – 10 ) (3sinx + 4 cos x – 10 ) is

(a) 84 (b) 45

(c) 4 9 (d) N/T

  1. Maxmum of 5 cos (^) +3 cos  
  • 3 is

(a) 5 (b) 10

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

  1. If the complex numbers sin x + i cos 2x and

cos x – i sin 2x are conjugate to each other, then x is equal to

(a) n (b)  

n

(c) 0 (d) N/T

  1. The number of solutions of 2 cos^2 sin x 2

x (^2)  

x^2 + 2

, 0 x x

2

  is

(a) 0 (b) 1

(c) infinite (d) N/T.

  1. Number of solution for |cot x| = cot x + cosec

x in [ 0 ,2π ] is

(a) 0 (b) 1

(c) 2 (d) 3

  1. Number of solution for |sinx| = | cos3x | in

[ - 2π , 2π ] is

(a) 30 (b) 24

(c) 28 (d) 32

  1. General solution for |sin x| = cos x is

(a) 3

2 n

 (b) 4

n

(c) 4

2 n

 (d) N/T

  1. General solution for 2cot^2 x + 2√3 cotx + 4

cosec x + 8 =0 is

(a) 2 n   / 6 (b) n   / 6

(c) n   / 6 (d) 2 n   / 6

  1. If the solutions for  of cos p  + cos q  = 0,

p > 0, q > 0 are in A.P., then the numerically smallest common difference of A.P. is

(a) p q

(b) p q

(c)

2  pq

(d) p q

  1. If tan  sec 3 ; 0 ,thenis

(a) /3 (b) 2 /

(c) /6 (d) 5 /8.

  1.  ,(acute) satisfy sin  =1/2 cos  =1/3then

 + :

(a)  

  

2

, 3

  (b)  

(c)  

(d) 

  1. The real roots of equation cos^7 x + sin^4 x = 1in

the interval ( - , ) are :

(a) - , 0 2

(b) - , 0 2

(c) , 0 2

(d) 0, 4

INVERSE

  1. cos-1cos  

(a) 3

(b) 3

(c) 3

(d) N/T

  1. tan-11 + tan-12 + tan-13 =?

(a) 0 (b) 2

(c)  (d) N/T

  1. sin-1x + sin-1y = 2  3 then cos-1x + cos-1y =?

(a)  6 (b) 3

(c) 2  3 (d)

  1. Sin-1^ (sin 4) is

(a) 4 (b) π -

(c) 4 -π (d) N/T

  1. The value of  

  3

tan 3

cot cosec 1 1 is

(a) 3/17 (b) 4/

(c) 5/17 (d) 6/

  1. If x = sin (2 tan-1^ 2) and  

3

tan 2

sin

1 y , th

(a) x > y and y^2 = 1 – x(b) x < y

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

(c) x > y and y^2 = x (d) y^2 = 1 + x

  1. Solution set of equation sin-1x = 2 tan-1x, is

(a) {1, 2} (b) {-1, 2}

(c) {-1, 1, 0} (d) {1, 1/2, 0}

  1. If cos-1x + cos-1y + cos-1z = 3 then xy + yz +

zx =?

(a) – 3 (b) 0

(c) 3 (d) – 1

  1. If sin-1x + sin-1y = then x^100 + y^1005 =?

(a) 0 (b) 2

(c) 1 (d) – 1

  1. If sin-1x + sin-1y + sin-1z = 2

then x^2 + y^2 + z^2 +

2xyz =?

(a) 0 (b) 1

(c) – 1 (d) N/T

  1. If x^2 + y^2 + z^2 = r^2 , then

yr

xz tan xr

yz tan zr

xy tan

 1  1  1   is equal to

(a)  (b) /

(c) 0 (d) N/T

  1. tan^2 (sec-12) + cot^2 (cosec-14) =?

(a) 13 (b) 18

(c) 17 (d) N/T

  1. sin (cot-1(tancos-1x)) =?

(a) x (b) 2 1  x

(c) 1/x (d) N/T

  1. sin-

1 

 4

x

2

x cos x 4

x

2

x x

4 6 1 2

2 3 (^) =

 2 then x =?

(a) 1/2 (b) – 1

(c) – 1/2 (d) 1

  1. If cos-1 / 6 then 3

y cos 2

x (^1)   

 9

y

2 3

xy

4

x cos

2 2 1 is

(a) 3/4 (b) 1/

(c) 1/4 (d) N/T

  1. tan x(x 1 ) sin x x 1 / 2 1 1 2        , No. of

Solns.

(a) 0 (b) 1

(c) 2 (d)

  1. tan 

a

b cos 2

1

  • tan 

a

b cos 2

1

(a) 2a/b (b) a/b

(c) 2b/a (d) b/a

  1. If cos x 0 then x?

20

i 1

i i

20

i 1

1  ^    

(a) 0 (b) 10

(c) 20 (d) 5

  1. If 0< a < b < c then cot -1^ ( ) a b

1 ab

  • cot -1^ (

b c

1 bc cot -1^ ( ) c a

1 ac

(a) 0 (b) π

(c) 2π (d) N/T

  1. If a> b> c> 0 then cot -1^ ( ) a b

1 ab

cot -1^ (  

b c

1 bc cot -1^ ( ) c a

1 ac

(a) 0 (b) π

(c) 2π (d) N/T

  1. If p > q > 0 & pr < -1 < qr then tan- 1 pq

p q

  • tan- 1 rq

q r

(^) + tan- 1 pr

r p

(^) is

(a) 0 (b) π

(c) cant say (d) - π

  1. If 0 < x < 1 &1 + sin-1^ x + (sin-1^ x )^2 + (sin-1^ x )^3
    • --------∞ = 2 then sin-1x is

(a) π/6 (b) π/

(c) π /12 (d) π / 4

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

(a) r + R (b) r – R

(c) 2(r + R) (d) N/T

  1. a cos A + b cos B + c cos C is

(a) 8∆^2 / abc (b) 4∆^2 / abc

(c) 3∆^2 / abc (d) N/T.

  1. If ∆ABC is a right triangle, the value of

  

A-B C

2 acsin can be equal to

(a) 4r^2 (b) 8R^2

(c) 2 R

(d) R

r

  1. If cos(A C)

cos(A C) cos 2 B 

 then tan A,tan B,tan C

are in

(a) A.P. (b) G.P.

(c) H.P. (d) N/T

  1. If altitudes of a triangle are in AP then sides are in

(a) AP (b) HP

(c) GP (d) AGP

  1. If p 1 , p 2 , p 3 are the altitudes of a triangle ABC from the vertices A, B, C and  the area of the

triangle, then p 2 3

2 2

2 1 p^ p

     is equal to

(a) 

a bc (b) 2

2 2 2

a b c

(c) 2

2 2 2 a b c

(d) N/T

  1. If cos A + cos B + 2 cos c = 2 then sides are in

(a) AP (b) GP

(c) HP (d) N/T

  1. In a ABC, a = 1 & perimeter is six times the

AM of sines of angles then A=?

(a) / 3 (b) /

(c) /4 (d) /

  1. In ABC two larger sides are 10 & 9. If angles

are in A.P then 3rd^ side is

(a) 3 3 (b) 5^6

(c) 5 (d) N/T

  1. If the radius of circumcircle of an isosceles triangle PQR is equal to PQ ( = PR ), then the angle P is

(a) π/6 (b) π/

(c) π/2 (d) 2π/3.

  1. In a triangle ABC with sides a, b, c, r 1 > r 2 > r 3 (which are the ex-radii ), then

(a) a > b > c (b) a < b < c

(c) a> b and b< c (d) a< b and b > c.

  1. r 1 =2 r 2 = 3 r 3 then

(a) a/b = 4/5 (b) a/b = 5/

(c) a+ b = 2c (d) 2a = b+c

  1. If then r

r

r

r

3

2

1

(a) A  90  (b) B 90 

(c)  C 90  (d) N/T

  1. In any harmonic mean of ex-radii is

(a) 3r (b) 2R

(c) R + r (d) N/T

  1. r 1 r 2 + r 2 r 3 + r 3 r 1

(a) S^2 (b) 2S^2

(c) 3S^2 (d) N/T

  1. If b + c = 3a, then the value of cot 2

B

cot 2

C

is

(a) 1 (b) 2

(c) 3 (d) 2.

  1. In a triangle ABC (Sin A + Sin B + Sin C) (Sin A
+ Sin B - Sin C) = 3 Sin A SinB then angle C 

(a) /6 (b) /

(c) /3 (d) N/T

  1. The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is :

(a)  

2 n

cot 4

a (b) a cot  

n

(c)  

2 n

cot 2

a (d) a cot  

2 n

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

  1. If two towers of hts b 1 and b 2 subtend 60 and

30  at mid-point of line joining their feet, then b 1 : b 2 =

(a) 1 : 2 (b) 1 : 3

(c) 2 : 1 (d) 3 : 1

  1. A man from the top of a 100 m high tower

sees a car moving towards the tower at an angle of depression of 30. After some time,

the angle of depression becomes 60. The distance (in metres) travelled by the car during this time is

(a) 100 3 (b) 3

(c) 3

(d) 200 3

  1. A person standing on bank of a river observes

that angle of elevation of top of a tree on opposite bank is 60 and when he retires 40 meters away from the tree, elevation is 30. The breadth of the river is :

(a) 20 m (b) 30 m

(c) 40 m (d) 60 m.

  1. In ABC, sides a,b,c are in A.P., a being

smallest, then cosA is

(a) 2 c

3 c  4 b (b) 2 b

3 c  4 b

(c) 2 c

4 c  3 b (d) N/T

  1. In triangle ABC, 3sinA + 4cosB = 6 and 4sinB
  • 3cosA = 1. Then the measure of the angle C

(a) 30° (b) 150°

(c) 30° or 150° (d) N/T,

 

 

sin

sin sin 3

cos

cos cos 3

3 3  

(a) 0 (b) 3

(c) 1 (d) 5

  1. If cos x + cos y + cos α =0 & If sinx + siny +

sin α =0 then cot  

x y is

(a) sinα (b) cos α

(c) cot α (d) 2 sinα

  1. Let a = (tan π/8) tan π/8^ , b = (tan π/8) cotπ/8^ , c = (cot π/8 ) tan π/ 8^ & d = (cot π/8 ) cot π/ 8

Then which one of the following statements is true about relative sizes of a,b,c,d?

(a) d > c > b> a (b) c > d > b > a,

(c) d > c > a > b (d) c > a > b > d

  1. Number of solutions of pair of 2 sin^2 θ - cos2θ = 0 , 2 cos^2 θ – 3sinθ = 0 in [ 0, 2π ] is

(a) 1 (b) 0

(c) 2 (d) 4

  1. cot -1^ (1^2 + 3/4 ) + cot -1^ ( 2^2 + 3/4 ) + cot -1^ ( 32 + 3/4 ) + ……∞

(a) π /4 (b) tan-1^2

(c) tan-1^3 (d) N/T

  1. If sin^2 x – 2 sinx – 1=0 has exactly 6 roots in [ 0 , n π ] then minimum of n is

(a) 2 (b) 4

(c) 6 (d) 3

  1. A triangular field has fencing of length x each on two of its sides while third is on river bank then maximum area is

(a) x^2 (b) x^2 /

(c) x^2 √2 (d) x^2 / √

  1. If sin A – sin B = a & cos A + cos B = b then

(a) a2 +^ b 2  4 (b) a2 +^ b 2  4

(c) a2 +^ b 2  3 (d) a2 +^ b 2  2

  1. If 0  a  3, 0 b  3, & x 2 + 4 + 3 cos ( ax + b) = 2x has atleast one solution then a + b is

(a) 0 (b) π / 2

(c) π (d) N / T

  1. For ∆ ABC sin 2 A + sin 2 B + sin 2 C - 2 cos A cos B cos C is

(a) 0 (b) 2

(c) -2 (d) -

  1. Number of points inside or on x^2 + y^2 = satisfying tan^4 x + cot 4 x + 1 = 3 sin^2 y is

(a) 0 (b) 2

(c) 4 (d) ∞

  1. There exists a  ABC satisfying the conditions

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-

ANSWER (TRIGONOMETRY)

b d a c c b b d a c b b b b c

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a c c a d b a c c b b b a b c

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

b a c b a c a d c c c b c c a

d a c b c d b c b b a c b b d

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

a c c b b b b a d c c a c c B

b a b a b c d a a a c a b b a

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

d a b c a b b b b a b b d a b

c a a d c c d b c c a b b c c

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

b c b b c b c a b a c c c c c