Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Sistematika Ichilenya, Manuais, Projetos, Pesquisas de Direito

Sistematika Ichilenya referat 14

Tipologia: Manuais, Projetos, Pesquisas

2016

Compartilhado em 14/12/2023

johnny-silverhand-1
johnny-silverhand-1 🇦🇴

3 documentos

1 / 30

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Реферат
по информатике и информационно-коммуникационным
технологиям
Тема: «Системы счисления»
2009г.
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e

Pré-visualização parcial do texto

Baixe Sistematika Ichilenya e outras Manuais, Projetos, Pesquisas em PDF para Direito, somente na Docsity!

Реферат

по информатике и информационно-коммуникационным

технологиям

Тема: «Системы счисления»

2009г.

Оглавление

  • Введение...................................................................................................................
  • История систем счисления.....................................................................................
  • Позиционные и непозиционные системы счисления........................................
  • Двоичная система счисления...............................................................................
  • Двоичное кодирование в компьютере.................................................................
  • Перевод чисел из одной системы счисления в другую.....................................
  • Заключение............................................................................................................
  • Список использованной литературы...................................................................

На современном этапе границы счета определены термином «бесконечность», который не обозначает какое либо конкретное число. Современный человек в повседневной жизни постоянно сталкивается с числами и цифрами - они с нами везде. Различные системы счисления используются всегда, когда появляется потребность в числовых расчётах, начиная с вычислений учениками младших классов, выполняемых карандашом на бумаге, заканчивая вычислениями, выполняемыми на суперкомпьютерах. Поэтому эта тема для меня очень интересна, и мне захотелось узнать об этом больше.

История систем счисления Система счисления – это способ записи (изображения) чисел. Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы:  позиционные,  непозиционные. Наиболее совершенными являются позиционные системы счисления. Они являются результатом длительного исторического развития непозиционных систем счисления. Цель создания системы счисления- выработка наиболее удобного способа записи количественной информации. Существует много различных систем счисления. Некоторые из них распространены, другие распространения не получили. Наиболее простая и понятная для нас система счисления - десятичная (основание 10). Понятна она потому, что мы используем ее в повседневной жизни. Единичная система В древние времена, когда люди начали считать, появилась потребность в записи чисел. Количество предметов, например, изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине, дереве (до изобретения бумаги было еще очень далеко). Каждому предмету в такой записи соответствовала одна черточка. Археологами найдены такие «записи» при раскопках культурных слоев, относящихся к периоду палеолита (10–11 тысяч лет до н.э.). Ученые назвали этот способ записи чисел единичной (палочной) системой счисления. В ней для записи чисел применялся только один вид знаков – палочка. Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых равнялось обозначаемому числу. Неудобства такой системы записи чисел и ограниченность ее применения очевидны: чем большее число надо записать, тем длиннее строка

Обозначение чисел в ионийской системе нумерации

Обозна- чение Название Значе- ние Обозна- чение Название Значе- ние Обозна- чение Назва- ние Значе- ние α (^) Альфа 1 ι (^) Йота 10 ρ (^) Ро 100

β Бета 2 κ^ Каппа 20 σ^ Сигма 200

γ (^) Гамма 3 λ Лямбда 30 τ^ Тау 300 δ (^) Дельта 4 μ (^) Мю 40 υ^ Ипсило н

ε (^) Эпсилон 5 ν (^) Ню 50 ϕ (^) Фи 500

Фауб 6 ξ^ Кси 60 χ^ Хи 600

ζ Дзета 7 ο^ Омикрон 70 ψ^ Пси 700

η (^) Эта 8 π^ Пи 80 ω^ Омега 800 θ Тэта 9 Коппа 90 Сампи 900 Запись чисел в ионийской системе счисления ,

α =^1000 ,

, β =^2000 , ιη =^18 , υζ =^407 , χκα =^621. Южные и восточные славянские народы для записи чисел пользовались алфавитной нумерацией. У одних славянских народов числовые значения букв установились в порядке славянского алфавита, у других же (в том числе у русских) роль цифр играли не все буквы, а только те, которые имеются в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок: («титло»).

Обозначение чисел в древнеславянской системе нумерации

Обозна- чение Название Значе- ние Обозна- чение Название Значе- ние Обозна- чение Назва- ние Значе- ние Аз 1 И 10 Рцы 100 Веди 2 Како 20 Слово 200 Глаголь 3 Люди 30 Твердо 300 Добро 4 Мыслите 40 Ук 400 Есть 5 Наш 50 Ферт 500 Зело 6 Кси 60 Хер 600 Земля 7 Он 70 Пси 700 Иже 8 Покой 80 Омега 800 Фита 9 Червь 90 Цы 900 Славянская нумерация В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая «арабская нумерация» , которой мы пользуемся и сейчас. Славянская нумерация сохранялась только в богослужебных книгах. При записи чисел, больших 10, цифры писались слева направо в порядке убывания десятичных разрядов (однако иногда для чисел от 11 до 19 единицы записывались ранее десяти). Для обозначения тысяч перед числом их (слева внизу) ставился особый знак. Запись чисел в древнеславянской системе счисления: = (^22) , = (^156) , = (^7002) , = (^320001).

нумерацию называют шестидесятеричной. Числа, меньшие 60, обозначались с помощью двух знаков: для единицы и для десятка. Они имели клинообразный вид, так как вавилоняне писали на глиняных дощечках палочками треугольной формы. Эти знаки повторялись нужное число раз. При отсутствии промежуточного разряда применялся знак. Запись вавилонской клинописью чисел до 60 = (^5) , = (^30) , = (^35) , = (^59). Запись вавилонской клинописью чисел, больших 60 Обозначение Значение Способ образования 302 5 ⋅^60 +^2 1295 21 ⋅^60 +^35 3725 1 ⋅^60 ⋅^60 +^2 ⋅^60 +^5 7203 2 ⋅^60 ⋅^60 +^0 ⋅^60 +^3 Шестидесятеричная запись целых чисел не получила распространения за пределами ассиро-вавилонского царства, но шестидесятеричные дроби проникли далеко за эти пределы: в страны Среднего Востока, Средней Азии, в Северную Африку и Западную Европу. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей. Следы шестидесятеричных дробей сохраняются и поныне в делении углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд.

Позиционные и непозиционные системы

счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами. В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы. В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки. В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах. Наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр. Различие между позиционной и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в

Десятичная система счисления — позиционная система счисления по целочисленному основанию 10. Наиболее распространённая система счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.  Двенадцатеричная (широко использовалась в древности, в некоторых частных областях используется и сейчас) — позиционная система счисления с целочисленным основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. Некоторые народы Нигерии и Тибета до сих пор используют двенадцатиричную систему счисления, но отголоски ее можно найти практически в любой культуре. В русском языке есть слово "дюжина", в английском "dozen", в некоторых местах слово двенадцать употребляют вместо «десять», как круглое число, например, подождите 12 минут.  Шестнадцатеричная (наиболее распространена в программировании, а также в шрифтах) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15. Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8- битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.  Шестидесятеричная (измерение углов и, в частности, долготы и широты) — позиционная система счисления по целочисленному основанию

  1. Использовалась в древние времена на Ближнем Востоке. Последствиями этой системы счисления является деление углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд. Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится

обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32. Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме. Другие системы счисления не используются в основном, потому что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто. Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

были продемонстрированы некоторые возможности практического применения двоичного счисления. В 1936 — 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем. Двоичная система счисления (Бинарная система счисления, binary) -- позиционная система счисления с основанием 2. Для представления чисел используются символы 0 и 1. Главное достоинство двоичной системы — простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требует ничего запоминать: ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе. Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления). Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется. Таблица деления сводится к двум равенствам 0/1 = 0, 1/1 = 1, благодаря чему деление столбиком многозначных двоичных чисел делается гораздо проще, чем в десятичной системе и, по существу, сводится к многократному вычитанию. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого, здесь проще, так как таким числом могут быть либо 0, либо сам делитель. Сложение многоразрядных двоичных чисел осуществляется в соответствии с таблицей с учетом возможных переносов из младшего разряда в старшие.

Вот как выглядит таблица сложения в двоичной системе: 0 + 0 = 0 1 + 0 = 1 0 + 1 = 1 1 + 1 = 10 При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак. Таблица разности двоичных чисел: 0 - 0 = 0 1 - 1 = 0 1 - 0 = 1 10 - 1 = 1 Существует более легкий способ вычитания в двоичной системе, для этого необходимо каждую цифру 1 вычитаемого поменять на цифру 0, а цифру 0 поменять на цифру 1 и выполнить сложение получившихся чисел. Рассмотрим пример: 1100112 -1001 2 =110011 2 -001001 2 =110011 2 +110110 2 =101001 2 Недостатком двоичной системы является то, что она не привычна для человека. Значит, неудобством этой системы счисления (как, впрочем, и всякой другой, отличной от десятичной) является необходимость перевода исходных данных из десятичной системы в двоичную при вводе их в машину и обратного перевода из двоичной в десятичную при выводе результатов вычислений.

«объемом»), которая выражается в битах (от английского binary digit – двоичная цифра). Бит – минимальная единица измерения информации. В каждом бите может храниться 0 или 1. Для измерения объема хранимой информации используются следующие единицы: 1 байт = 8 бит; 1 кбайт (килобайт) = 1024 байт = 2 10 байт; 1 Мбайт (мегабайт) = 1024 кбайт = 2^10 кбайт = 2^20 байт; 1 Гбайт (гигабайт) = 1024 Мбайт = 2^10 Мбайт = 2^20 кбайт = 2^30 байт. Число 1024 как множитель при переходе к более высшей единице измерения имеет своим происхождением двоичную систему счисления (1024 – это десятая степень двойки): Все позиционные системы счисления являются равноправными, но в разных случаях удобнее пользоваться разными системами. Из всех позиционных систем счисления наибольшее распространение, за исключением десятичной, получила двоичная система счисления. В первую очередь это связано с надежностью представления информации: при ее кодировании, передаче и декодировании вероятность ошибки (потери информации) мала по сравнению с тем, когда при представлении данной информации используются другие системы счисления. Двоичная система проста, так как для представления информации в ней используются всего два состояния или две цифры. Такое представление информации принято называть двоичным кодированием. Представление информации в двоичной системе использовалось человеком с давних времен. Так, жители островов Полинезии передавали необходимую информацию при помощи барабанов: чередование звонких и глухих ударов. Звук над поверхностью воды распространялся на достаточно большое расстояние, таким образом «работал» полинезийский телеграф. В телеграфе в XIX–XX веках информация передавалась с помощью азбуки

Морзе – в виде последовательности из точек и тире. Часто мы договариваемся открывать входную дверь только по «условному сигналу» – комбинации коротких и длинных звонков. Самюэл Морзе в 1838 г. изобрел код – телеграфную азбуку – систему кодировки символов короткими и длинными посылками для передачи их по линиям связи, известную как «код Морзе». Современный вариант международного «кода Морзе» (International Morse) появился совсем недавно

  • в 1939 году, когда была проведена последняя корректировка. Двоичная система используется для решения головоломок и построения выигрышных стратегий в некоторых играх.