Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

RESPOSTAS DAS QUESTOES ELETRONICA ANAL, Exercícios de Eletrônica Analógica

RESPOSTAS DAS QUESTOES ELETRONICA ANAL

Tipologia: Exercícios

2025

Compartilhado em 20/03/2025

erick-ferreira-70
erick-ferreira-70 🇧🇷

2 documentos

1 / 4

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
13
4. (a) ID = IR = 30 V 0.7 V
1.5 k
D
EV
R
= 19.53 mA
VD = 0.7 V, VR = E VD = 30 V 0.7 V = 29.3 V
(b) ID = 30 V 0 V
1.5 k
D
EV
R
= 20 mA
VD = 0 V, VR = 30 V
Yes, since E VT the levels of ID and VR are quite close.
5. (a) I = 0 mA; diode reverse-biased.
(b) V20 = 20 V 0.7 V = 19.3 V (Kirchhoff’s voltage law)
I(20
) = 19.3 V
20 = 0.965 A
V(10
) = 20 V 0.7 V = 19.3 V
I(10
) = 19.3 V
10 = 1.93 A
I = I(10
) + I(20
)
= 2.895 A
(c) I = 10 V
10 = 1 A; center branch open
6. (a) Diode forward-biased,
Kirchhoff’s voltage law (CW): 5 V + 0.7 V Vo = 0
Vo = 4.3 V
IR = ID = 4.3 V
2.2 k
o
V
R
= 1.955 mA
(b) Diode forward-biased,
ID = 8 V + 6 V 0.7 V
1.2 k 4.7 k
= 2.25 mA
Vo = 8 V (2.25 mA)(1.2 k
) = 5.3 V
7. (a) Vo = 10 k (12 V 0.7 V 0.3 V)
2 k 10 k


= 9.17 V
(b) Vo = 10 V
pf3
pf4

Pré-visualização parcial do texto

Baixe RESPOSTAS DAS QUESTOES ELETRONICA ANAL e outras Exercícios em PDF para Eletrônica Analógica, somente na Docsity!

  1. (a) I (^) D = I (^) R = 30 V^ 0.7 V 1.5 k

E V D

R 

 = 19.53 mA VD = 0.7 V , VR = EVD = 30 V  0.7 V = 29.3 V

(b) I (^) D = 30 V^ 0 V 1.5 k

E V D

R 

 (^)   = 20 mA

VD = 0 V , VR = 30 V

Yes, since EVT the levels of I (^) D and VR are quite close.

  1. (a) I = 0 mA ; diode reverse-biased.

(b) V 20  = 20 V  0.7 V = 19.3 V (Kirchhoff’s voltage law) I (20 Ω) = 19.3 V 20 

= 0.965 A

V (10 Ω) = 20 V  0.7 V = 19.3 V

I (10 Ω) = 19.3 V

= 1.93 A

I = I (10 Ω) + I (20 Ω)

= 2.895 A

(c) I = 10 V 10 

= 1 A ; center branch open

  1. (a) Diode forward-biased, Kirchhoff’s voltage law (CW): 5 V + 0.7 V  Vo = 0 Vo =  4.3 V I (^) R = I (^) D = 4.3 V 2.2 k

V o R

 = 1.955 mA

(b) Diode forward-biased, I (^) D = 8 V + 6 V^ 0.7 V 1.2 k  4.7 k

= 2.25 mA Vo = 8 V  (2.25 mA)(1.2 kΩ) = 5.3 V

  1. (a) Vo = 10 k (12 V 0.7 V 0.3 V) 2 k 10 k

= 9.17 V

(b) Vo = 10 V

  1. (a) Determine the Thevenin equivalent circuit for the 10 mA source and 2.2 k resistor.

ETh = IR = (10 mA)(2.2 k) = 22 V RTh = 2. 2k

Diode forward-biased I (^) D = 22 V^ 0.7 V 2.2 k  2.2 k

= 4.84 mA Vo = I (^) D (1.2 k) = (4.84 mA)(1.2 k) = 5.81 V (b) Diode forward-biased I (^) D = 20 V + 20 V^ 0.7 V 6.8 k

 (^) = 5.78 mA

Kirchhoff’s voltage law (CW):

  • Vo  0.7 V + 20 V = 0 Vo =  19.3 V
  1. (a) Vo (^) 1 = 12 V – 0.7 V = 11.3 V

Vo (^) 2 = 1.2 V (b) Vo (^) 1 = 0 V Vo (^) 2 = 0 V

  1. (a) Both diodes forward-biased Si diode turns on first and locks in 0.7 V drop. 12 V 0.7 V R 4.7 k

I

  = 2.4 mA I (^) D = I (^) R = 2.4 mA Vo = 12 V  0.7 V = 11.3 V

(b) Right diode forward-biased: I (^) D = 20 V + 4 V^ 0.7 V 2.2 k

 (^) = 10.59 mA

Vo = 20 V  0.7 V = 19.3 V

  1. (a) Si diode “on” preventing GaAs diode from turning “on”:

I = 1 V^ 0.7 V^ 0.3 V 1 k  1 k

 (^)  = 0.3 mA

Vo = 1 V  0.7 V = 0.3 V

(b) I = 16 V^ 0.7 V^ 0.7 V + 4 V^ 18.6 V 4.7 k  4.7 k

  (^)  = 3.96 mA

Vo = 16 V  0.7 V  0.7 V = 14.6 V

  1. The Si diode requires more terminal voltage than the Ge diode to turn “on”. Therefore, with 5 V at both input terminals, assume Si diode “off” and Ge diode “on”. The result: Vo = 5 V  0.3 V = 4.7 V The result supports the above assumptions.
  2. V dc = 0.318 VmVm = dc^ 2 V 0.318 0.

V  = 6.28 V

I (^) m = 6.28 V 2 k

V m R

 = 3.14 mA

  1. Using V dc  0.318( VmVT ) 2 V = 0.318( Vm  0.7 V) Solving: Vm = 6.98 V  10:1 for Vm : VT
  2. Vm = dc^ 2 V 0.318 0.

V  = 6.28 V

I (^) L max =

6.28 V

10 k = 0.628 mA