Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Exercício de Transferência de Calor: Análise de Condução em Parede, Exercícios de Calor e Transferência de Massa

resolução de exercícios do incropera

Tipologia: Exercícios

2020

Compartilhado em 17/04/2020

jessica-gomes-epg
jessica-gomes-epg 🇧🇷

3

(4)

2 documentos

1 / 1

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
PROBLEM 2.31
KNOWN: Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.
FIND: (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)
Convection coefficient.
SCHEMATIC:
ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant k.
ANALYSIS: (a) From Fourier’s law,
()
x T
q k 200 60x k
x
′′ =− =
′′ =′′
=qq C
m
W
mK W/m
in x=0 2
200 1 200
o
<
()
2
out x=L
q q 200 60 0.3 C/m 1 W/m K=182 W/m .
′′ ′′
==× ×
o <
Applying an energy balance to a control volume about the wall, Eq. 1.12c,
&& &
′′ ′′ =′′
EE E
in out s
t
&.
′′ =′′ ′′ =Eqq W/m
st in out 2
18 <
(b) Applying a surface energy balance at x = L,
()
out
qhTLT
′′ ⎡⎤
=−
⎣⎦
() ()
2
out
q182 W/m
h= TL T 142.7-100 C
′′ =
o
h = 4.3 W/ m K.
2 <
COMMENTS: (1) From the heat equation,
(T/t) = (k/ρcp) 2T/x2 = 60(k/ρcp),
it follows that the temperature is increasing with time at every point in the wall.
(2) The value of h is small and is typical of free convection in a gas.

Pré-visualização parcial do texto

Baixe Exercício de Transferência de Calor: Análise de Condução em Parede e outras Exercícios em PDF para Calor e Transferência de Massa, somente na Docsity!

PROBLEM 2.

KNOWN: Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.

FIND: (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)

Convection coefficient.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant k.

ANALYSIS: (a) From Fourier’s law,

x (^ )

T

q k 200 60x k x

′′ = ′′ = ×

q q =

C

m

W

m K

in x=0 W / m

2 200 1 200

o

2 qout ′′^ = q ′′x=L= 200 − 60 × 0.3 C/m × 1 W/m K=182 W/m .⋅

o

Applying an energy balance to a control volume about the wall, Eq. 1.12c,

E^ &^ ′′ − E&^ ′′ = E&′′

in out st

E^ &^ ′′ = q (^) ′′ − q (^) ′′ = W / m. st in out

2

(b) Applying a surface energy balance at x = L,

qout ′′^ = h T L⎡⎣ ( ) −T∞⎤⎦

2 q (^) out 182 W/m h= T L T∞ (^) 142.7-100 C

− o

h = 4.3 W / m K.

2

COMMENTS: (1) From the heat equation,

(∂T/∂t) = (k/ρcp ) ∂

2 T/∂x

2 = 60(k/ρcp ),

it follows that the temperature is increasing with time at every point in the wall.

(2) The value of h is small and is typical of free convection in a gas.