





Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Descreve o experimento de movimento uniformemente variado no plano inclinado
Tipologia: Notas de estudo
1 / 9
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Engenharia de Produção
O objetivo foi determinar a aceleração de um objeto, neste caso, bola de gude, sobre um plano inclinado e a distância que ele se desloca ao longo de um trilho. Para tanto, foi utilizada a Equação de Torriceli. INTRODUÇÃO O plano inclinado consiste em um sistema em que observa o movimento de objetos sobre planos inclinados, seja esse objeto subindo ou descendo. Galileu Galilei (1564–1642) afirmava que um objeto móvel em linha reta, deveria manter seu estado de movimento em linha reta para sempre sem nenhuma força externa necessária para isto. Galileu testou sua hipótese fazendo experimentos com diversos objetos sobre planos inclinados. Observou que bolas rolando para baixo tornavam-se mais velozes, enquanto as que rolavam para cima tornavam-se menos velozes em um plano inclinado. De acordo com as leis de Newton quando um corpo se move livremente em um plano inclinado, sem atrito, a componente Pn do peso se cancela com a força normal, portanto a força resultante é responsável por sua aceleração e a componente tangencial de seu peso. O objetivo deste experimento visa mostrar a influência de um plano inclinado na aceleração de um móvel. Um experimento em laboratório que representa a segunda lei de Newton pode ser observado na Figura 1, na qual foi utilizado um trilho suspenso por uma alavanca formando um plano inclinado e uma bolinha de gude como corpo móvel.
As forças atuantes sobre o corpo no plano inclinado, Figura 1, são: Força peso: P = m.g (onde: g = 9,8 m/s^2 , m = massa do corpo dada em kg), FN: Força de reação normal ao plano. Ao desprezar os atritos nota-se que o corpo desloca-se para baixo. Analiticamente, decompomos a força peso em duas componentes: Px = componente do peso na direção do eixo x Py = componente do peso na direção do eixo y Os módulos das componentes Px e Py são obtidos a partir das relações trigonométricas do triângulo retângulo, de acordo com a Figura abaixo: Figura 2. Decomposição das forças. Do triângulo retângulo tem-se que: seno é o cateto oposto (Px) sobre a hipotenusa (P): Eq. 2 Eq. 3 Para determinar a aceleração com que o bloco desce o plano inclinado, foi utilizado a Segunda Lei de Newton ( ).
Px = FR Eq. 4 Px = m. a Eq. 5 Px = P. sen θ Eq. 6 m.a = P. sen θ Eq. 7 Sendo o peso P = m.g, tem-se: m.a = m.g. sen θ Eq. 8 Simplificando-se as massas encontra-se o valor da aceleração. A aceleração do corpo não depende de sua massa. a = g .sen θ Eq. 9 Na direção do eixo Y, temos: FN – Py = m.a Eq. 10 Como a aceleração é nula na direção de y, a relação acima se anula. FN – Py = 0 Eq. 11
Balança Bel Engineering - máx: 1300g, mín: 200mg, classe: II, precisão: + 0,01g; Trena Vonder – 5 m, precisão + 0,1 cm; Cronômetro Unilab, precisão +1 centésimo;
Figura 3. Esquema do experimento Plano Inclinado. Onde: sen ϴ = cateto oposto / hipotenusa sen ϴ = 7,5 / 131, ϴ = 3,27° DADOS Abaixo, segue a Tabela 1 referente às dez descidas da bola e seus respectivos tempos, obtendo um tempo médio de 2,78 segundos. Tabela 1. Marcação do Tempo Descida Tempo 1 2 segundos e 75 centésimos 2 2 segundos e 78 centésimos 3 2 segundos e 82 centésimos 4 2 segundos e 72 centésimos 5 2 segundos e 56 centésimos 6 2 segundos e 81 centésimos 7 2 segundos e 78 centésimos 8 2 segundos e 68 centésimos
9 2 segundos e 94 centésimos 10 2 segundos e 93 centésimos MÉDIA 2 segundos e 78 centésimos Cálculo da aceleração considerando a distância S = S 0 + V 0 t + ½ at^2 V 0 = 0 e ∆S = 1,315m 1,315 = a(2,78)^2 / ae = 0,34 m/s^2 Cálculo da aceleração considerando o tempo at = g.senϴ at = 9,8 sen3, at = 0,56 m/s^2 Cálculo do erro % E% = [(at – ae)/at]. 100 E% = [(0,56 – 0,34) / 0,56]. E% = 39,11% CONCLUSÃO Com este experimento foi possível observar que ae apresentou uma aceleração menor em relação a at, com um erro de 39,11%. Ao determinar ae foi necessária a marcação do tempo através de um cronômetro, com isso ocorre a probabilidade de maiores erros durante a medição, pois não existe apenas os erros dos equipamentos, e sim os erros durante a marcação do tempo no momento da partida da bolina, e