Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

PROJECOES CARTOGRAFICAS, Slides de Engenharia Civil

A palavra cartografia tem origem na língua portuguesa, tendo sido registrada pela primeira vez em 1839 numa correspondência, indicando a ideia de um traçado de mapas e cartas. Hoje entendemos cartografia como a representação geométrica plana, simplificada e convencional de toda a superfície terrestre ou de parte desta, apresentada através de mapas, cartas ou plantas

Tipologia: Slides

2020

Compartilhado em 14/06/2022

ilca-oliveira-9
ilca-oliveira-9 🇧🇷

5 documentos

1 / 26

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
UNIVERSIDADE ZAMBEZE
FACULDADE DE ENGENHARIA AMBIENTAL E DOS RECURSOS
NATURAIS
Metodos Topograficos Geodesicos e Cartograficos
Curso de Engenharia de Construcoes Rurais e ordenamento do territorio
(ECROT)
Regente: MSC. Andre Conrado
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Pré-visualização parcial do texto

Baixe PROJECOES CARTOGRAFICAS e outras Slides em PDF para Engenharia Civil, somente na Docsity!

UNIVERSIDADE ZAMBEZE

FACULDADE DE ENGENHARIA AMBIENTAL E DOS RECURSOS

NATURAIS

Metodos Topograficos Geodesicos e Cartograficos

Curso de Engenharia de Construcoes Rurais e ordenamento do territorio

(ECROT)

Regente: MSC. Andre Conrado

1

TIPO DE PROJECOES CARTOGRAFICAS 2

PROJEÇÕES CARTOGRÁ FICAS  (^) GLOBO – é uma das formas de representação da Terra. A diferença entre os eixos polar e equatorial do planeta é tão pequena que seria praticamente impossível representá-la em escala tão reduzida nos globos de mesa. A esfera terrestre pode se desenvolver num plano, ou utilizar superfícies intermediárias: o cone, o cilindro e o plano.  (^) Projeção Cartográfica: “correspondência matemática entre as coordenadas plano-retangulares da carta e as coordenadas esféricas da Terra”. “na elaboração de um mapa deve-se ter um método, onde cada ponto da Terra corresponde um ponto no mapa”. É a base para construção dos mapas, à medida em que se constitui numa rede de paralelos e meridianos, sobre a qual os mapas poderão ser desenhados (DUARTE, 2002

CLASSIFICAÇÃO DAS PROJEÇÕES Quanto ao método Quanto à superfície de projeção Geométricas (geometria descritiva) Analíticas (matemáticas) Planas (Azimutais)Cônicas Cilíndricas Poli- superficiais Quanto às propriedades Eqüidistantes Conformes Equivalentes Afiláticas Quanto ao tipo de contato entre as superfícies de projeção e referências Tangentes Secantes

PROJEÇÃO POLAR PLANA HORIZONTAL OU AZIMUTAL Obtida pela transposição das coordenadas sobre um plano colocado em posição determinada em relação à esfera. A superfície do globo é projetada sobre um plano a partir de um centro de perspectiva ou ponto de vista. Quanto ao ponto de vista pode ser:  Gnomônica ou Central : quando o ponto de vista é o centro da Terra;  Estereográfica : quando o ponto de vista é o ponto na superfície da Terra que se encontra diretamente oposto;

PROJEÇÃO POLAR PLANA HORIZONTAL OU AZIMUTAL Quanto ao ponto de vista pode ser: Ambas podem se classificar em polar, equatorial ou oblíqua. Também podem ter o princípio das projeções tangentes e secantes

  • (^) Ortográfica: quando o ponto de vista se acha no infinito. Esta é sempre secante.

Ex: Projeção Estereográfica Polar - das

folhas da Carta Internacional ao Milionésimo, ao norte do paralelo 84 o de latitude norte e ao sul do paralelo de 80 o

PROJEÇÃO CÔNICA  (^) Todos os paralelos são circunferências concêntricas a esse ponto.  Pode ser:  tangente (somente um dos paralelos tem real grandeza)  secante (dois paralelos conservam suas dimensões). Ex.: Projeção Cônica Conforme de Lambert – um cone secanteutilizada da 1 a até a 2 a Guerra Mundialdeformações não permitem o uso de escalas maiores que 1: 50.000.  (^) Desenvolvimento da superfície de um cone que envolve a esfera  (^) Meridianos são retas que convergem em um ponto, que representa o vértice do cone,

PROJEÇÃO CÔNICA NORMAL

  • CARACTERÍSTICAS  (^) AS LINHAS TRAÇADAS NA ESFERA DO EQUADOR AO PÓLO, FORAM PROJETADAS PARA A SUPERFÍCIE DE DESDOBRAMENTO, PARTINDO DE UM PONTO DO INTERIOR DA ESFERA;  (^) A ÚNICA LINHA DE VERDADEIRA GRANDEZA É O PARALELO DE TANGÊNCIA;  (^) O PÓLO É PROJETADO DEVIDO À FORMA PECULIAR DO CONE, E EM FUNÇÃO DISSO, OS MERIDIANOS PROJETADOS ENCONTRAM-SE NO PÓLO GUARDANDO UMA SEMELHANÇA COM A ESFERA;  (^) O VÉRTICE DO CONE ENCONTRA-SE NO PROLONGAMENTO DO EIXO DA ESFERA;  (^) OS PARALELOS SÃO REPRESENTADOS POR ARCOS DE - (^) CÍRCULOS CONCÊNTRICOS NO VÉRTICE  (^) OS MERIDIANOS SÃO RETAS QUEPARTEM DO VÉRTICE

PROJEÇÃO CILÍNDRICA As linhas traçadas na esfera foram transferidas para a superfície de desenvolvimento através de projeções partidas do centro da esfera.  (^) No caso da Projeção Cilíndrica Equatorial :  Somente o Equador é tangente à superfície cilíndrica e conserva a sua dimensão; Fonte: JOLY, F., p. 49, 1990  (^) Ocorrem grandes deformações superficiais nas altas latitudes;O polo ou as áreas próximas a ele não tem a possibilidade de serem projetadas;Os meridianos e paralelos são linhas retas perpendiculares entre si.

Variações e adaptações  (^) Transversa : o eixo do cilindro gira transversalmente ao eixo polar da Terra. Ex.: Projeção Universal Transversa de Mercator adotada pelo IBGE e outros do Brasil.  (^) Oblíqua : o eixo do estará inclinado cilindroem relação da Terra. Ex.de Mercator ao eixo Projeçã o oblíqua. PROJEÇÃO CILÍNDRICA Fonte: IBGE, p. 36, 1999

PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR (UTM)

PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR (UTM)

 (^) É transversa: o eixo do cilindro gira transversalmente ao eixo polar do globo terrestre, numa posição secante e assim, o raio do cilindro se torna menor que o raio da esfera.  (^) UTM (1950, EUA) abrange a totalidade das longitudes e, para isso, é feito um fracionamento em fusos (módulos de 6 o ) de longitude, determinada de forma a não ultrapassar certos limites aceitáveis de deformação.  (^) O Equador é dividido em 60 fusos de 6o^ de longitude cada, idênticos, portanto, os cálculos para um deles (fuso padrão) têm seus resultados válidos para toda a Terra, ou seja, para todos os fusos.  (^) A numeração das zonas, começando com a Zona 1, tem sua origem no antimeridiano de Greenwich – 180 o W e vai caminhando progressivamente de oeste para leste até chegar à Zona 60, que está compreendida entre 174 o E e 180 o E.

 (^) O problema das projeções é encontrar para o traçado das coordenadas um princípio no qual a deformação seja a menor possível.  A solução adotada para a construção de uma carta, está em escolher a projeção que atenda determinado objetivo. De acordo com a classificação de OLIVEIRA (1989: 60) tem-se:  Projeções Equivalentes: Conserva a proporcionalidade das áreas;  Projeções Conformes: Manutenção da verdadeira forma das áreas, conservando os ângulos verdadeiros. PROPRIEDADES DAS PROJEÇÕES

Projeções Eqüidistantes : Constância das relações entre as distâncias dos pontos representados e as distâncias dos seus correspondentes;  Projeções Afiláticas: Não conservam nenhuma das propriedades anteriores, porém fazem com que todas as deformações tendam a um valor mínimo.  (^) No caso das Projeções Planas Horizontais, Azimutais ou Zenitais: Mantém verdadeiras as distâncias a partir do centro da projeção e os ângulos azimutais. PROPRIEDADES DAS PROJEÇÕES