



Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
A precisão de uma série de medições é uma medida da concordância entre ... diferença entre os conceitos de precisão e exatidão (Figura 1). Os quadrados.
Tipologia: Notas de estudo
1 / 5
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Adaptado de: V. Thomsen. “ Precision and The Terminology of Measurement”. The Physics Teacher, Vol. 35, pp.15-17, Jan. 1997. Por: Prof. J. Humberto Dias da Silva. Para: Curso de Licenciatura em Física / Lab. de Eletromagnetismo/Unesp-Bauru 2006.
Precisãoa^ é geralmente confundida com outros termos utilizados em medições, tais como exatidãob, resolução, e sensibilidadec. A fonte desta confusão torna-se evidente quando encontramos a definição de precisão no dicionário como “a qualidade de ser preciso; exatidão, acuidade,etc”. Além disso, ao discutir erros associados aos processos de medição observa-se que o uso de conceitos estatísticos nos vários campos de aplicação é diferente e o vocabulário utilizado raramente coincide. Finalmente, as interessantes relações existentes entre os quatro termos – precisão, exatidão, resolução, e sensibilidade pode ser causa adicional de confusão. Thomsen apresenta no trabalho definições destes termos consistentes com a terminologia da ASTM (American Society for Testing and Materials) e discute a inter- relação entre os termos.
A precisão de uma série de medições é uma medida da concordância entre determinações repetidas. A precisão é usualmente quantificada como o desvio padrão de uma série de medidas. A exatidão de uma medida (ou da média de um conjunto de medidas) é a distância estimada entre a medida e um valor “verdadeiro”, “nominal”, “tomado como referência”, ou “aceito”. Geralmente é expressa como um desvio ou desvio percentual de um valor conhecido. A precisão geralmente é associada com erros aleatórios do processo de medição, enquanto a exatidão está associada a fontes sistemáticas. A Tabela 1 extraída de Halliday e Resnick (Fundamentos da Física, Vol.3, p. 10) pode ajudar a aquisição de um melhor conhecimento da diferença entre exatidão e precisão. Embora não especificado o termo “uncertainty” (incerteza) dado é presumivelmente derivado estatisticamente de uma série de medidas feitas pelo mesmo experimentador, de maneira que podemos identificá-la como a precisão dos valores medidos. Note que as últimas determinações convergiram para um valor constante, considerado atualmente “verdadeiro” ou “aceito”. Podemos também usar uma ilustração do tipo alvo para nos auxiliar a entender a diferença entre os conceitos de precisão e exatidão ( Figura 1 ). Os quadrados representam as posições atingidas por flechas disparadas contra o alvo. Os diagramas mostram curiosas inter-relações entre estas duas quantidades. Note que o alvo (b), denominado “Baixa precisão, alta exatidão” foi golpe de sorte estatístico, de maneira que apenas a média das quatro tentativas representa alta exatidão (“foi na mosca ”). Este tipo de quebra das regras estatísticas tem probabilidade muito baixa de ocorrer quando um grande número de eventos é considerada, porém para pequeno número de eventos (como na Fig. 1(b)) estas coincidências não devem ser desprezadas na análise.
a (^) Tradução de precision. b (^) Tradução de accuracy. c (^) Tradução de sensitivity.
A resolução de um instrumento de medida, algumas vezes chamada de “ capacidade de leitura ” é uma medida da “ fineza do detalhe revelado ” pelo instrumento de medida. É basicamente uma medida do menor incremento mensurável. Uma régua graduada em milímetros tem uma resolução de cerca de 0,5 mm ou um pouco menos, já que podemos esperar observar uma diferença correspondente entre dois objetos que tenham 2,50 e 2,55 cm. A resolução de um voltímetro digital com display de 3 dígitos, geralmente é expressa como ± 1 no último dígito. A sensibilidade , por outro lado é uma medida da menor quantidade mensurável por um instrumento particular. Posso medir um nanômetro com uma régua? Claramente não! Em química analítica e física experimental a sensibilidade é freqüentemente definida como o “limite de detecção” do instrumento. Considere o hodômetro de um automóvel como um instrumento de medição. Vamos considerar que o hodômetro esteja corretamente calibrado de maneira que não tenhamos razão para questionar a exatidão das medidas. Nestas condições seria possível discernir se o carro está a 41 ou 42 km/h? Esta é uma questão que se refere à resolução do hodômetro. Entretanto, se eu começo dirigir e acelero bem lentamente, a que velocidade o hodômetro começa registrar? Esta é uma questão a respeito da sensibilidade do hodômetro. Note que resolução e sensibilidade são ambos diferentes tanto de precisão quanto de exatidão. Algumas vezes pode existir inter-relação entre estas grandezas. Exemplo: Considere as dez medidas hipotéticas apresentas a seguir: 9,9 / 10,1 / 9,7 / 10,2 / 10,0 / 9,8 / 9,9 / 10,3 / 10,1 /10,0. A média é 10,0 e o desvio quadrático médio é 0,18. Entretanto se nosso equipamento de medida não tiver resolução suficiente todas as medidas podem ser “10”, o que daria um desvio quadrático médio de zero, indicando ( incorretamente ) uma excelente precisão.
Nos cursos introdutórios de física normalmente propomos aos estudantes que eles atribuam um “erro estimado” ao resultado de experimentos de laboratório. Como as medidas no laboratório de ensino geralmente são tomadas apenas uma vez, ou um número pequeno de vezes, este erro estimado é baseado quase unicamente na resolução dos instrumentos de medida. Este “erro estimado ” não deve ser confundido com a precisão ou com a exatidão da medida. Entretanto, utilizando o resultado dos vários grupos de estudantes podemos introduzir os conceitos de precisão e incerteza baseados na avaliação estatística dos dados, ou seja do cálculo do desvio padrão. Comparando o resultado com um valor “conhecido” ou “aceito” podemos estabelecer a exatidão da medida. As inter-relações entre os pontos importantes a respeito do processo de medição são interessantes: (1) Não se pode ter alta exatidão sem alta precisão. Entretanto o inverso não é verdadeiro: é possível ter alta precisão num experimento absolutamente inexato. (2) A precisão de uma série de medidas realizada com instrumento de baixa resolução pode de fato parecer (erroneamente) melhor que aquela de um instrumento que tenha maior resolução. (3) Com uma pobre sensibilidade, a precisão, e conseqüentemente a exatidão, irão sofrer em medidas das menores quantidades.
Resumindo:
Durante a aquisição de dados dois tipos de erro experimental, erros sistemáticos e erros aleatórios, geralmente contribuem para o erro na quantidade medida. Erros sistemáticos são devidos a causas identificáveis e podem em princípio ser eliminados. Erros desse tipo resultam em valores que são sistematicamente mais altos ou mais baixos. Há quatro tipos de erros sistemáticos:
Um cientista experimental geralmente geralmente quer identificar e eliminar os erros sistemáticos. Erros randômicos‡^ são flutuações positivas e negativas que produzem cerca de metade das medidas com valores mais baixos e metade mais altos. Algumas vezes pode ser muito difícil de identificar as fontes de erros randômicos. Possíveis fontes desses erros são:
Os erros aleatórios, diferente dos erros sistemáticos, podem ser geralmente quantificados por análise estatística, portanto o efeito dos erros aleatórios sobre uma determinada quantidade ou lei física sob investigação podem geralmente ser determinados.
† (^) N.T. No original está “environmental”. Melhores exemplos talvez sejam uma corrente de ar direcional
que influencia uma colisão em trilho de ar sempre da mesma maneira, ou o fato de que o experimento encontra-se próximo de uma fonte de campo magnético o qual afeta sistematicamente uma medida de magnetização de alta sensibilidade.
‡ (^) Também chamados de aleatórios