Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Notas de Aula Análise de Estruturas, Notas de aula de Engenharia Civil

ANALISE DAS ESTRUTRURAS

Tipologia: Notas de aula

2017

Compartilhado em 23/03/2017

wagner-de-oliveira-10
wagner-de-oliveira-10 🇧🇷

4.3

(4)

3 documentos

1 / 164

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
ANÁLISE DE ESTRUTURAS
ESTRUTURAS ESTATICAMENTE
INDETERMINADAS
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Notas de Aula Análise de Estruturas e outras Notas de aula em PDF para Engenharia Civil, somente na Docsity!

ANÁLISE DE ESTRUTURAS

ESTRUTURAS ESTATICAMENTE

INDETERMINADAS

1. INTRODUÇÃO

 ESTRUTURAS ESTATICAMENTE INDETERMINADAS, OU HIPERESTÁTICAS, SÃO

ESTRUTURAS ESTÁVEIS QUE POSSUEM MAIS FORÇAS DESCONHECIDAS DO QUE

EQUAÇÕES DE EQUILÍBRIO.

 AS FORÇAS ALÉM DAS NECESSÁRIAS PARA MANTER A ESTRUTURA EM EQUILÍBRIO

SÃO DENOMINADAS FORÇAS REDUNDANTES.

 PARA SEREM ANALISADAS, SÃO NECESSÁRIAS EQUAÇÕES ADICIONAIS ÀS

EQUAÇÕES DE EQUILÍBRIO.

2. ESTRUTURAS CONTÍNUAS

 SÃO ESTRUTURAS COMPOSTAS DE UM ÚNICO VÃO. À MEDIDA QUE O VÃO SE

TORNA MAIS LONGO, OS MOMENTOS FLETORES AUMENTAM RAPIDAMENTE.

 POR ECONOMIA, PARA GRANDES VÃOS É VANTAJOSO TRABALHAR COM

ESTRUTURAS QUE POSSUAM MENORES MOMENTOS.

 PODE-SE USAR UMA ESTRUTURA HIPERESTÁTICA OBTIDA PELA SUBDIVISÃO DESTE

VÃO.

EXEMPLO 2

(a)

(b)

4. DESVANTAGENS DAS ESTRUTURAS

HIPERESTÁTICAS

 RECALQUE DOS APOIOS: QUANDO AS FUNDAÇÕES SÃO RUINS, QUALQUER

RECALQUE OU ROTAÇÃO DOS APOIOS PODEM CAUSAR GRANDES VARIAÇÕES NOS

ESFORÇOS INTERNOS E EXTERNOS.

 DESENVOLVIMENTO DE OUTRAS TENSÕES: VARIAÇÃO DE TEMPERATURA, MÁ

FABRICAÇÃO OU DEFORMAÇÕES INTERNAS DOS ELEMENTOS ESTRUTURAIS

PODEM CAUSAR VARIAÇÕES SIGNIFICATIVAS DAS FORÇAS AO LONGO DA

ESTRUTURA.

 TENSÕES REVERSAS: PODE SER NECESSÁRIO MATERIAL ADICIONAL EM

DETERMINADAS SEÇÕES PARA RESISTIR AO CARREGAMENTO.

5. MÉTODOS PARA ANÁLISE DAS

ESTRUTURAS HIPERESTÁTICAS

 MÉTODO DAS FORÇAS: NESTE MÉTODO, OS VÍNCULOS EXCEDENTES SÃO

LIBERADOS, SENDO SUBSTITUÍDOS POR FORÇAS EQUIVALENTES. SÃO

INTRODUZIDAS EQUAÇÕES ADICIONAIS DE COMPATIBILIDADE DE

DESLOCAMENTOS.

 MÉTODO DOS DESLOCAMENTOS: OS DESLOCAMENTOS DOS NÓS DAS

ESTRUTURAS SÃO USADOS NAS EQUAÇÕES EM LUGAR DAS FORÇAS

REDUNDANTES. COMO ELE PERMITE IMPLEMENTAÇÃO COMPUTACIONAL, É O

MÉTODO MAIS EMPREGADO.

1. DIAGRAMAS DE ESI (ESFORÇOS SOLICITANTES INTERNOS)

 O MÉTODO USADO É DENOMINADO MÉTODO DAS SEÇÕES.

 PRIMEIRAMENTE, DEVE-SE ESCREVER AS EQUAÇÕES DOS ESFORÇOS

INTERNOS.

 FINALMENTE, OS DIAGRAMAS SÃO CONSTRUÍDOS COM BASE NAS

EQUAÇÕES.

1.1 MÉTODO DE CONSTRUÇÃO

1) ESTABELEÇA UM SISTEMA DE COORDENADAS NA VIGA.

2) DETERMINE AS REAÇÕES DE APOIO QUANDO NECESSÁRIO.

3) ESPECIFIQUE OS INTERVALOS DE VARIAÇÃO DOS ESFORÇOS EM FUNÇÃO

DE X. TODA VEZ QUE O CARREGAMENTO VARIAR, UM INTERVALO DEVE

SER CRIADO.

4) SECCIONE A VIGA EM CADA INTERVALO E DESENHE O DCL DA SEÇÃO.

1.2 CONVENÇÃO POSITIVA DE SINAIS

NA FACE ESQUERDA DO ELEMENTO, A FORÇA NORMAL ATUA PARA A DIREITA, O

ESFORÇO CORTANTE ATUA PARA BAIXO E O MOMENTO FLETOR ATUA NO SENTIDO

ANTI-HORÁRIO.

DE ACORDO COM A 3ª LEI DE NEWTON, AS FORÇAS E MOMENTOS TÊM DE ATUAR NO

SENTIDO CONTRÁRIO AO ANTERIOR. LOGO, SE ESTIVERMOS ESTUDANDO A FACE

DIREITA DO ELEMENTO, A CONVENÇÃO POSITIVA É:

1.3 RESUMO

ESFORÇO SOLICITANTE CONVENÇÃO POSITIVA

A FORÇA NORMAL É CONSIDERADA POSITIVA SE

CRIAR TRAÇÃO NO SEGMENTO CONSIDERADO

A FORÇA CORTANTE POSITIVA FARÁ COM QUE O

SEGMENTO DA VIGA SOBRE O QUAL ATUA, GIRE

NO SENTIDO HORÁRIO

O MOMENTO FLETOR POSITIVO TENDERÁ A

CURVAR O SEGMENTO DA VIGA SOBRE O QUAL

ATUA COM UMA CONCAVIDADE PARA CIMA

EXERCÍCIO 1

DETERMINE OS DIAGRAMAS DE ESI’S PARA A VIGA ABAIXO.

ANÁLISE DE ESTRUTURAS

REVISÃO – ISOSTÁTICA 2

PÓRTICOS

REGRAS PRÁTICAS PARA DETERMINAR O LADO DE REFERÊNCIA.

1) SEMPRE QUE SE PUDER DISTINGUIR UM LADO INTERNO E UM EXTERNO DA

BARRA (EM RELAÇÃO AO CONTORNO DA ESTRUTURA), O LADO DE REFERÊNCIA

SERÁ O INTERNO.

2) SE ISSO NÃO FOR POSSÍVEL, ADOTA-SE O LADO INFERIOR DA BARRA COMO

REFERÊNCIA, CASO ELA NÃO SEJA VERTICAL.

3) SE A BARRA É VERTICAL E NÃO SE ENQUADRA NO PRIMEIRO CASO, O LADO DE

REFERÊNCIA É O DIREITO.