








Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Pontes e viadutos são estruturas que permitem interligar ao mesmo nível pontos não acessíveis, separados por obstáculos naturais ou artificiais. Desse modo, eles desempenham um papel fundamental na infraestrutura de transporte e no desenvolvimento econômico de um país
Tipologia: Notas de estudo
1 / 14
Esta página não é visível na pré-visualização
Não perca as partes importantes!
SUBMETIDO 25/08/2020 > APROVADO 02/10/
[1] renato_nicoletti@hotmail.com. [2] alexandre-rossi@hotmail.com. [3] emerson_bolandim@hotmail.com. [4] alex@ufscar.br. Departamento de Engenharia Civil / Universidade Federal de São Carlos (UFSCar). [5] chmartins@uem.br. Departamento de Engenharia Civil / Universidade Estadual de Maringá (UEM).
In the design of bridges and viaducts, the suspension system has several advantages, including techno- economic feasibility for large spans, aesthetic factors, and flexibility in geometry. However, there are few specific normative codes for suspension bridges. Among them and the generic bridge codes, there is a large discrepancy about the deflection limits. This paper presents and discusses the vertical deflection limitations by the main standards and literature recommendations. In addition, the influence of geometry on the vertical deflection limit of suspension bridges is investigated. For this purpose, we analyzed 14 bridges with different span lengths, the width of the deck, and the height of the mast. In the review carried out, there was a trend in the literature in the development of more coherent methods and criteria for controlling deflection, vibration, and other dynamic effects. In turn, in the analyzes, it was found that the practice of limiting the vertical deflection only to a quotient involving the span may not be accurate and efficient since the influence of other parameters was verified, affecting the vertical deflection and vibrations in the structure, such as the width of the board and the height of the mast. Therefore, studies are fundamental to substantiate the criteria for deflection limitations and the dimensioning of bridges to the limit state of service since simplistic solutions can make the structure economically or technically unfeasible.
1 Introdução
Fonte: elaborada pelos autores
(1)
(2)
PROCEDIMENTOS RECOMENDAÇÃO OBSERVAÇÕES
ABNT NBR 7187 (2003) 350
L
Origens nos limites estabelecidos pela NBR 6118. Não explicita quais carregamentos devem ser` usados. Recomendação para pontes em concreto armado ou protendido.
ABNT NBR 16694 (2020) 800
L Recomendação para pontes de aço ou mistas de aço e concreto.
AASHTO LRFD Bridge Design Specifications (2017) 1.
L Limite criticado na comunidade científica.
Eurocódigos Não limitam as deflexões pelo vão
Para pontes ferroviárias, limitam a deflexão em
600
L (^).
Canadian Structural Manual (2016) 600
L
MLIT Limit State Design (COREIA DO SUL, 2015) (^350)
Específica para pontes pênseis.
Australian Standard 5100. (2017) (^600)
Barker, Staebler e Barth (2011) 2
Sendo fn a primeira frequência natural da estrutura. Expressão recomendada para pontes sem passagem de pedestres.
Saadeghvaziri et al. (2012)
Sendo Amáx a aceleração máxima dos veículos; fn a primeira frequência natural da ponte; V a velocidade de projeto da via; e L o comprimento do vão longitudinal.
Fonte: elaborado pelos autores
3 Metodologia
MODELO LARGURA [m] L (^) p [m] L (^) s [m] H 1 [m] H 2 [m] S [m] A2_1 5,00 70,00 14,00 10,00 5,00 2, A2_2 10,00 70,00 14,00 10,00 5,00 2, A2_3 15,00 70,00 14,00 10,00 5,00 2, A2_4 20,00 70,00 14,00 10,00 5,00 2,
Fonte: elaborada pelos autores
MODELO LARGURA [m] Lp [m] L (^) s [m] H 1 [m] H 2 [m] S [m] A3_1 7,00 70,00 14,00 5,00 2,50 1, A3_2 7,00 70,00 14,00 10,00 5,00 2, A3_3 7,00 70,00 14,00 15,00 7,50 3, A3_4 7,00 70,00 14,00 20,00 10,00 4,
Fonte: elaborada pelos autores
4 Resultados e discussão
(a) (b) Fonte: elaborada pelos autores
ANÁLISE MODELO f (^) n (Hz)
DEFLEXÃO VERTICAL LIMITE (mm) Barker, Staebler e Barth (2011)
Saadeghvaziri et al. (2012)
Fonte: elaborada pelos autores
Deflexão vertical limite (mm)
Vão longitudinal - L (m) Barker, Staebler e Barth (2011) Saadeghvaziri et al. (2012) MLIT (CORÉIA DO SUL, 2015) e NBR 7187 (ABNT, 2003) NBR 16694 (ABNT, 2020) CAN/CSA-S6-06 (CSA, 2006) e AS 5100.2 (SA, 2017) AASHTO (2017)
330,2/fn²
A/(ω²1,2α)
Fonte: elaborada pelos autores
Deflexão vertical limite (mm)
Largura do tabuleiro (m) Barker, Staebler e Barth (2011) Saadeghvaziri et al. (2012) MLIT (CORÉIA DO SUL, 2015) e NBR 7187 (ABNT, 2003) NBR 16694 (ABNT, 2020) CAN/CSA-S6-06 (CSA, 2006) e AS 5100.2 (SA, 2017) AASHTO (2017)
330,2/fn²
A/(ω²1,2α)
Fonte: elaborada pelos autores
Deflexão vertical limite (mm)
Altura do mastro acima do tabuleiro - H1 (m) Barker, Staebler e Barth (2011) Saadeghvaziri et al. (2012) MLIT (CORÉIA DO SUL, 2015) e NBR 7187 (ABNT, 2003) NBR 16694 (ABNT, 2020) CAN/CSA-S6-06 (CSA, 2006) e AS 5100.2 (SA, 2017) AASHTO (2017)
330,2/fn²
A/(ω²1,2α)
Fonte: elaborada pelos autores
HAN, Y. et al. Stress Analysis of a Long-Span Steel- Truss Suspension Bridge under Combined Action of Random Traffic and Wind Loads. Journal of Aerospace Engineering, v. 31, n. 3, p. 04018021, maio 2018.
JUNG, M.-R. et al. Deflection Theory for Self-Anchored Suspension Bridges under Live Load. Journal of Bridge Engineering, v. 20, n. 7, p. 04014093, jul. 2015.
JUNG, M.-R. et al. Elastic Stability Behavior of Self- Anchored Suspension Bridges by the Deflection Theory. International Journal of Structural Stability and Dynamics, v. 17, n. 4, p. 1750050, 6 maio 2017.
KIM, S.-W.; KIM, N.-S. Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT & E International, v. 59, p. 25-33, out. 2013.
KIRKCALDIE, D. K.; WOOD, J. H. Review of Australian standard AS 5100 Bridge design with a view to adoption. [ s.l.: s.n. ], 2008.
LIU, M. et al. Study and Prototype Design of a Suspension Bridge with Ultra-Long Span and CFRP Main Cables. Journal of Highway and Transportation Research and Development (English Edition), v. 8, n. 4, p. 47-56, dez. 2014.
LIU, Z. et al. Fatigue Assessment of Critical Connections in a Historic Eyebar Suspension Bridge. Journal of Performance of Constructed Facilities, v. 33, n. 1, p. 04018091, fev. 2019.
LIU, Z. et al. Fatigue Life Evaluation on Short Suspenders of Long-Span Suspension Bridge with Central Clamps. Journal of Bridge Engineering, v. 22, n. 10, p. 04017074, out. 2017.
MA, C. M. et al. Vortex-Induced Vibration Performance and Suppression Mechanism for a Long Suspension Bridge with Wide Twin-Box Girder. Journal of Structural Engineering, v. 144, n. 11, p. 04018202, nov. 2018.
NICOLETTI, R. S. et al. Análise do limite de deflexão em pontes mistas de aço e concreto em alma cheia e sua influência no dimensionamento. Revista Brasileira Mutidisciplinar, v. 23, n. 3, p. 50-67, set. 2020. DOI: 10.25061/2527-2675/ReBraM/2020.v23i3.848. Disponível em: https://revistarebram.com/index.php/ revistauniara/article/view/848. Acesso em: 16 ago. 2021.
NICOLETTI, R. S.; SOUZA, A. S. C. Influência dos estados limites último e de serviço no dimensionamento de pontes e viadutos mistos
STANDARDIZATION. Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings. EN 1993-1-1. Brussels: CEN, 2005.
CHENG, J.; LI, Y. Simplified method for predicting the deflections of cable-stayed suspension bridges considering live loads. KSCE Journal of Civil Engineering, v. 19, n. 5, p. 1413-1419, 1 jul. 2015.
COREIA DO SUL. MLIT – Ministry of Land. Limit State Design: Korean Bridge Design Code. Seul: MLIT, 2015.
CSA – CANADIAN STANDARDS ASSOCIATION. CAN/CSA-S6-06: Canadian highway bridge design code. Toronto: CSA, 2006.
DEMITZ, J. R.; MERTZ, D. R.; GILLESPIE, J. W. Deflection Requirements for Bridges Constructed with Advanced Composite Materials. Journal of Bridge Engineering, v. 8, n. 2, p. 73-83, mar. 2003.
DENG, Y. et al. Serviceability assessment for long-span suspension bridge based on deflection measurements. Structural Control and Health Monitoring, v. 25, n. 11, p. e2254, nov. 2018.
DICKEY, R. W. An Improved Method for the Numerical Solution of the Suspension Bridge Deflection Equations. Mathematics of Computation, v. 22, n. 102, p. 298, abr. 1968a.
DICKEY, R. W. The suspension bridge deflection equations. Journal of Mathematical Analysis and Applications, v. 24, n. 1, p. 202-211, out. 1968b.
ERDOĞAN, H.; GÜLAL, E. Ambient Vibration Measurements of the Bosphorus Suspension Bridge by Total Station and GPS. Experimental Techniques, v. 37, n. 3, p. 16-23, maio 2013.
FENERCI, A.; ØISETH, O. Strong wind characteristics and dynamic response of a long-span suspension bridge during a storm. Journal of Wind Engineering and Industrial Aerodynamics, v. 172, p. 116-138, jan. 2018.
FENERCI, A.; ØISETH, O.; RØNNQUIST, A. Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain. Engineering Structures, v. 147, p. 269-284, set. 2017.
FU, C. C. et al. Serviceability-related issues for bridge live load deflection and construction closure pours. Baltimore: Maryland State Highway Administration, 2015.
XIA, Q. et al. Experimental Study of Thermal Effects on a Long-Span Suspension Bridge. Journal of Bridge Engineering, v. 22, n. 7, p. 04017034, jul. 2017.
YU, J. et al. Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Engineering Structures, v. 81, p. 432-443, dez. 2014.
de aço e concreto em seção caixão. Revista Tecnológica, v. 29, n. 1, p. 113-129, 2020.
PARK, K.-J.; KIM, D.-Y.; HWANG, E.-S. Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges. International Journal of Steel Structures, v. 18, n. 4, p. 1252-1264, 20 nov. 2018.
PARK, S.-H. Long-time behavior for suspension bridge equations with time delay. Zeitschrift für angewandte Mathematik und Physik, v. 69, n. 2, p. 45, 24 abr. 2018.
PEÑA, Á. et al. Minimum geotechnical requirements for traditional and singular bridges foundations design: Chacao Suspension Bridge. Revista de la Construcción, v. 16, n. 3, p. 498-506, 31 dez. 2017.
PETERSEN, Ø. W.; ØISETH, O.; LOURENS, E. Investigation of dynamic wind loads on a long-span suspension bridge identified from measured acceleration data. Journal of Wind Engineering and Industrial Aerodynamics, v. 196, p. 104045, jan. 2020.
RAMNAVAS, M. P. et al. Cracked span length beam element for service load analysis of steel concrete composite bridges. Computers & Structures, v. 157, p. 201-208, set. 2015.
SA – STANDARDS AUSTRALIA. Australian Standard: AS 5100.2. Bridge design – Part 2: Design loads. Sydney: SAI Global Limited, 2017.
SAADEGHVAZIRI, M. A. et al. Design for deflection control vs. use of specified span to depth ratio limitations. [Trenton, NJ]: New Jersey Department of Transportation, 2012.
SHIN, S.-U. et al. A deflection theory and its validation of earth-anchored suspension bridges under live loads. KSCE Journal of Civil Engineering, v. 19, n. 1, p. 200-212, 28 jan. 2015.
TADESSE, Z. et al. Neural networks for prediction of deflection in composite bridges. Journal of Constructional Steel Research, v. 68, n. 1, p. 138-149, jan. 2012.
WODZINOWSKI, R.; SENNAH, K.; AFEFY, H. M. Free vibration analysis of horizontally curved composite concrete-steel I-girder bridges. Journal of Constructional Steel Research, v. 140, p. 47-61, jan. 2018.