Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Exercícios de Cálculo Numérico: Métodos de Resolução de Equações, Exercícios de Cálculo Avançado

KKKWFQEFLista de Exercicios Resolvida sobre Interpolacao e Integracao - MAP2121 - Cálculo Numérico (Poli)

Tipologia: Exercícios

2019

Compartilhado em 01/12/2019

junior-costa-79
junior-costa-79 🇧🇷

5

(1)

2 documentos

1 / 11

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
1)
aL381928 =3
10 +8
102+1
103106=0.381 ´106
RND ®0.382 ´106
bL78.457 =7
10 +8
102+4
103102=0.784 ´102
RND ®0.785 ´102
cL-9142.683 =9
10 +1
102+4
103104=0.914 ´104
2)Escreva os seguintes números que estão no sistema binário no sistema de base 10
aL
11 =1×21+1×20=3 d
0.11 =1×2-1+1×2-2=1
2+1
4=0.75 d
bL0.1011 =1×2-1+0×2-2+1×2-3+1×2-4
0.1011 =0.6875 d
cL1.0011 =1+0×2-1+0×2-2+1×2-3+1×2-4
1.0011 =1.1875 d
eL0.111101101 =1
2+1
4+1
8+1
16 +1
64 +1
128 +1
512 =0.962890625
3)Escreva os seguintes números que estão no sistema decimal no sistema de binário
aL13.25 d =D+1
4h=1101.01 b
bL0.10125
0.10125 *2=0.2025 ®0
0.2025 *2=0.4050 ®0
0.4050 *2=0.8100 ®0
0.8100 *2=1.6200 ®1
0.6200 *2=1.2400 ®1
0.2400 *2=0.4800 ®0
pf3
pf4
pf5
pf8
pf9
pfa

Pré-visualização parcial do texto

Baixe Exercícios de Cálculo Numérico: Métodos de Resolução de Equações e outras Exercícios em PDF para Cálculo Avançado, somente na Docsity!

ü 1)

aL 381928 =

RND Æ 0.382 ¥ 106

bL 78.457 =

RND Æ 0.785 ¥ 102

cL - 9142.683 =

ü 2)Escreva os seguintes números que estão no sistema binário no sistema de base 10

aL

11 = 1 ◊ 21 + 1 ◊ 20 = 3 d

0.11 = 1 ◊ 2 -^1 + 1 ◊ 2 -^2 =

= 0.75 d

11.11 = 3.75 d

bL 0.1011 = 1 ◊ 2 -^1 + 0 ◊ 2 -^2 + 1 ◊ 2 -^3 + 1 ◊ 2 -^4 0.1011 = 0.6875 d

cL 1.0011 = 1 + 0 ◊ 2 -^1 + 0 ◊ 2 -^2 + 1 ◊ 2 -^3 + 1 ◊ 2 -^4 1.0011 = 1.1875 d

dL 110101 = 53

eL 0.111101101 =

ü 3)Escreva os seguintes números que estão no sistema decimal no sistema de binário

aL 13.25 d = D +

h = 1101.01 b

bL 0.

0.10125 * 2 = 0.2025 Æ 0

0.2025 * 2 = 0.4050 Æ 0

0.4050 * 2 = 0.8100 Æ 0

0.8100 * 2 = 1.6200 Æ 1

0.6200 * 2 = 1.2400 Æ 1

0.2400 * 2 = 0.4800 Æ 0

0.4800 * 2 = 0.96 Æ 0

0.96 * 2 = 1.92 Æ 1

0.92 * 2 = 1.84 Æ 1

0.84 * 2 = 1.68 Æ 1

0.68 * 2 = 1.36 Æ 1

0.36 * 2 = 0.72 Æ 0

0.72 * 2 = 1.44 Æ 1

= 0.00011001111010111000011 b

dL 13 d = D h = 1101 b

eL 12.03135 = 1100.0000100000000111 b

ü 4)

ü a) x = cosH x L

xn + 1 = xn -

f H xn L f ¢H xn L f H x L = cosH x L - x

f ¢H x L = -sinH x L - 1

x 0 = 0.

0.5 1.0 1.5 2.

n x xn+ 1 »xn+ 1 - xn» 1 0.5 0.7552224171 0. 2 0.7552224171 0.7391416661 0. 3 0.7391416661 0.7390851339 0. 4 0.7390851339 0.7390851332 7.056460971 ¥ 10 -^10

x = 0.

ü b) 5 LogH x L - 2 + 0.4 x = 0

xn = 0.5;

xn = 1.0;

5

10

15

xn = 2.0;

x = 2.2360 ± 0.

ü 8 L 26

5

fn@xD = x -

x^5 - 26 5 x^4

xn = 3.0;

n x xn+ 1 »FHxL» »xn+ 1 - xn» 1 3. 2.464197531 64.86101634 0. 2 2.464197531 2.112384701 16.05959316 0. 3 2.112384701 1.951070545 2.272542303 0. 4 1.951070545 1.919705199 0.07190142514 0. 5 1.919705199 1.918646362 0.00007927253425 0. 6 1.918646362 1.918645192 9.667999734 ¥ 10 -^11 1.169965351 ¥ 10 -^6 7 1.918645192 1.918645192 0. 1.426858631 ¥ 10 -^12 8 1.918645192 1.918645192 0. 0.

x = 1.91864 ± 1.2 ¥ 10 -^6

Obs: Na máquina, fazendo com precisao de 10 temos:

NB 26

5 , 10F

ü 10) J x 2 M

2

- SinH x L=

In[16]:= fn@x_D := x -

I x 2 M^2 - Sin@xD x 2 -^ Cos@xD

In[23]:= xn^ =^

Out[23]= 1.

In[24]:= Calculos^ =^ TableB:n, xnn^ =^ xn, xn^ =^ fn@xnD, AbsB^

xn 2

2

- Sin@xnDF, Abs@xnn - xnD>, 8 n, 5<F

Out[24]= 98 1, 1.75, 1.957321875, 0.03155280944, 0.2073218748<, 8 2, 1.957321875, 1.934046551, 0.0003871027911, 0.02327532417<, 9 3, 1.934046551, 1.933753809, 6.147857079 ¥ 10 -^8 , 0.0002927412905=, 9 4, 1.933753809, 1.933753763, 1.33226763 ¥ 10 -^15 , 4.65071166 ¥ 10 -^8 =, 9 5, 1.933753763, 1.933753763, 1.110223025 ¥ 10 -^16 , 1.110223025 ¥ 10 -^15 ==

In[25]:= Insert@Calculos, 8 "n", "x", "xn+ 1 ", "»FHxL»", "»Erro»"<, 1D êê TableForm

Out[25]//TableForm= n x xn+ 1 »FHxL» »Erro» 1 1.75 1.957321875 0.03155280944 0. 2 1.957321875 1.934046551 0.0003871027911 0. 3 1.934046551 1.933753809 6.147857079 ¥ 10 -^8 0. 4 1.933753809 1.933753763 1.33226763 ¥ 10 -^15 4.65071166 ¥ 10 -^8 5 1.933753763 1.933753763 1.110223025 ¥ 10 -^16 1.110223025 ¥ 10 -^15

ü 9) x^3 - 2 x^2 + 2 x - 5 = 0

x 0 = 2; x- 1 = - 2

Out[59]=

xn xn+ 1 erro

    1. 0.3421052632 6. 0.3421052632 0.4578018321 0. 0.4578018321 1.224238104 0. 1.224238104 0.6488285049 0. 0.6488285049 0.7408028831 0. 0.7408028831 0.8187751087 0. 0.8187751087 0.8033058267 0. 0.8033058267 0.8044336475 0. 0.8044336475 0.8044534159 0. 0.8044534159 0.8044533884 3.419458367 ¥ 10 -^8 0.8044533884 0.8044533884 8.188110462 ¥ 10 -^13

x > 0.

ü 12) Ln(x) - x + 2=0 Ε [3,4]

In[60]:= xn@nD^ =^ 3;^ xn@n^ -^1 D^ =^ 4;

Out[68]=

xn xn+ 1 erro 3 3.138438589 0. 3.138438589 3.146281039 0. 3.146281039 3.14619317 0. 3.14619317 3.146193221 1.606294995 ¥ 10 -^8 3.146193221 3.146193221 1.044519495 ¥ 10 -^13

x > 3.

ü 13)

x^2 - 3 x + „x^ = 2

  • 2 - 1 1 2

2

4

6

8

In[160]:= xn@nD = 2; xn@n - 1 D = 1;

Método das secantes :

Out[167]=

xn xn+ 1 FHxL erro 2 1.274412356 3.389056099 0. 1.274412356 1.387008355 - 0.6225111896 0. 1.387008355 1.454999563 - 0.2343758921 0. 1.454999563 1.445836439 0.03650663372 0. 1.445836439 1.446236039 - 0.00166462923 0. 1.446236039 1.446238687 - 0.00001095912569 1.831098053 ¥ 10 -^6

x = 1.

Método de Newton:

In[176]:= xn^ =^ 1.00;

Out[178]=

n xn xn+ 1 FHxL erro 0 1. 1.745930121 1.541711356 0. 1 1.745930121 1.498189631 0.2235861771 0. 2 1.498189631 1.448169929 0.008006202531 0. 3 1.448169929 1.446241495 0.00001162624072 0. 4 1.446241495 1.446238686 2.463851345 ¥ 10 -^11 2.808538916 ¥ 10 -^6 5 1.446238686 1.446238686 8.881784197 ¥ 10 -^16 5.951905635 ¥ 10 -^12

x = 1.

Metodo bissecção

In[195]:= a^ =^ 1.0; b^ =^ 2.0;

Out[197]=

n a x b FHxL Ε 0 1. 1.5 2. 0.2316890703 0. 1 1. 1.25 1.5 - 0.6971570425 0. 2 1.25 1.375 1.5 - 0.2792982771 0. 3 1.375 1.4375 1.5 - 0.03593649386 0. 4 1.4375 1.46875 1.5 0.09477855606 0. 5 1.4375 1.453125 1.46875 0.02865485134 0. 6 1.4375 1.4453125 1.453125 - 0.003831348585 0. 7 1.4453125 1.44921875 1.453125 0.01236399297 0. 8 1.4453125 1.447265625 1.44921875 0.004254398448 0. 9 1.4453125 1.446289063 1.447265625 0.0002085459752 0. 10 1.4453125 1.445800781 1.446289063 - 0.001812145797 0.

x = 1.

Método ponto fixo:

In[157]:= LogLinearPlotBAbsB^

Vm

J (^) ¸ 1 Ω c + R + ¸ Ω LN

F, 8 Ω, 1, 1000<, GridLines Æ AutomaticF

Out[157]=

5 10 50 100 500 1000

Podemos fazer x- 1 = 10 e x 0 = 100

im ä

Vm

R^2 + JH 2 Π fL L - (^) H 2 Π^1 fL c N 2

im R^2 + H 2 Π fL L -

H 2 Π fL c

2

2

ä Vm^2

A função fica: (lembre que frequencia negativa não é válido fisicamente, apenas pode-se considerá-la quando levar em

consideracao um atraso de fase de -Π)

im^2 R^2 + H 2 Π fL L -

H 2 Π fL c

- Vm^2 ä 0

Out[155]=

xn xn+ 1 F@xD erro 100 29.52962646 465.4662638 2. 29.52962646 40.1546866 - 82.63983873 0. 40.1546866 49.27955311 - 38.18128086 0. 49.27955311 47.26449216 10.82133788 0. 47.26449216 47.41288755 - 0.8602701653 0. 47.41288755 47.41581332 - 0.01663320285 0. 47.41581332 47.41580865 0.00002658455128 9.846398778 ¥ 10 -^8

f = 47.4158086 Hz

ü 15)

vo = 15.2; x1 = 18.2; h = 1.82; y = 2.1; g = 9.0;

  • 1 1. 1.109320061 0.15315055 0. n x xn+ 1 »FHxL» »xn+ 1 - xn»
  • 2 1.109320061 1.20854264 0.1222798506 0.
  • 3 1.20854264 1.290274358 0.08763025042 0.
  • 4 1.290274358 1.350741518 0.05698526485 0.
  • 5 1.350741518 1.391109964 0.03432372084 0.
  • 6 1.391109964 1.415880902 0.0195983603 0.
  • 7 1.415880902 1.430191939 0.01081944996 0.
  • 8 1.430191939 1.438147169 0.00585587258 0.
  • 9 1.438147169 1.44246951 0.003134388443 0.
  • 10 1.44246951 1.444787957 0.001667549188 0.
  • 11 1.444787957 1.446022812 0.0008842741638 0.
  • 12 1.446022812 1.446678032 0.0004681004545 0.
  • 13 1.446678032 1.447024991 0.0002475652294 0.
  • 14 1.447024991 1.44720852 0.0001308662066 0.
  • 15 1.44720852 1.447305544 0.00006915965757 0.
  • x = 1.
  • ü d L x^3 - x - 5 = - 0.5 1.0 1.5 2.0 2.5 3.
        • x^3 - x - fn@xD = x -
          • 3 x^2 -
    • 1 2. 1.909090909 0.04883546206 0. n x xn+ 1 »FHxL» »xn+ 1 - xn»
    • 2 1.909090909 1.90417486 0.0001382952717 0.
    • 3 1.90417486 1.904160859 1.11978693 ¥ 10 -^9 0.
    • x = 1.
  • ü 5) „ x - x^2 +
    • x = - 2.032531738 ± 0.
  • ü 6)
    • x? 2. - g x - + h + x tanHΘL - y á 2 I v 02 cos^2 HΘLM
  • 0.01 - 6. Tabela de valores a função:
  • 0.3241592654 - 1.
  • 0.6383185307 3.
  • 0.9524777961 6.
  • 1.266637061 - 14. - 1 0.3 0.47 0.64 0.8486644367 0. a = 0.3; b = 0.64; - 2 0.3 0.385 0.47 - 0.4159551941 0. - 3 0.385 0.4275 0.47 0.2211237631 0. - 4 0.385 0.40625 0.4275 - 0.09623513818 0. - 5 0.40625 0.416875 0.4275 0.06273976922 0. - 6 0.40625 0.4115625 0.416875 - 0.01667392707 0. - 7 0.4115625 0.41421875 0.416875 0.02305136942 0. - 8 0.4115625 0.412890625 0.41421875 0.003193331869 0. - 9 0.4115625 0.4122265625 0.412890625 - 0.006739145077 0.
    • 10 0.4122265625 0.4125585938 0.412890625 - 0.001772618456 0.
    • 11 0.4125585938 0.4127246094 0.412890625 0.0007104287462 0.
    • 12 0.4125585938 0.4126416016 0.4127246094 - 0.0005310768451 0.
    • 13 0.4126416016 0.4126831055 0.4127246094 0.00008968045299 0.
    • 14 0.4126416016 0.4126623535 0.4126831055 - 0.0002206970705 0.
    • 15 0.4126623535 0.4126727295 0.4126831055 - 0.00006550802733 0.
    • 16 0.4126727295 0.4126779175 0.4126831055 0.00001208628318 5.187988281 ¥ 10 -
    • 17 0.4126727295 0.4126753235 0.4126779175 - 0.00002671085449 2.593994141 ¥ 10 -
    • 18 0.4126753235 0.4126766205 0.4126779175 - 7.312281258 ¥ 10 -^6 1.29699707 ¥ 10 -
    • 19 0.4126766205 0.412677269 0.4126779175 2.387002058 ¥ 10 -^6 6.484985352 ¥ 10 -
    • 20 0.4126766205 0.4126769447 0.412677269 - 2.462639326 ¥ 10 -^6 3.242492676 ¥ 10 -
    • 21 0.4126769447 0.4126771069 0.412677269 - 3.781856406 ¥ 10 -^8 1.621246338 ¥ 10 -
    • 22 0.4126771069 0.4126771879 0.412677269 1.174591764 ¥ 10 -^6 8.106231691 ¥ 10 -
    • 23 0.4126771069 0.4126771474 0.4126771879 5.683866038 ¥ 10 -^7 4.053115846 ¥ 10 -
    • 24 0.4126771069 0.4126771271 0.4126771474 2.65284019 ¥ 10 -^7 2.026557921 ¥ 10 -
    • 25 0.4126771069 0.412677117 0.4126771271 1.137327292 ¥ 10 -^7 1.013278961 ¥ 10 -
    • 26 0.4126771069 0.4126771119 0.412677117 3.795708126 ¥ 10 -^8 5.066394804 ¥ 10 -