Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Lista de Exercícios de Cálculo Numérico - Métodos Numéricos, Exercícios de Cálculo Numérico

Escalonamento, método de gauss, fatoração L.U, método de newton, bissecção, interpolação, interpolação de Lagrange, método de gauss - seidel

Tipologia: Exercícios

2023

Compartilhado em 07/06/2024

david-willian-41
david-willian-41 🇧🇷

1 / 2

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Segunda Lista de Exercícios de Cálculo Numérico
Deniel Corre
19 de maio de 2024
Responda apenas às questões de forma que a soma dos p ontos totalize 5. Coloque as respostas em
ordem sequencial, indicando claramente a qual questão cada resposta se refere, usando caneta azul ou
preta.
1. (1,0 pontos ) Considere um problema em sua área de interesse que envolve a resolução da equação f(x) = 0, onde
f(x)descreve uma função para esse problema.
a) Utilize o método da bissecção para encontrar uma aproximação da solução da equação f(x)=0no intervalo
[a, b], com uma precisão de 105.
b) Utilize o método de Newton para encontrar uma aproximação da solução da equação f(x)=0, partindo de um
ponto inicial x0.
2. (1,0 pontos ) Use o método de Newton-Raphson para obter a menor raiz positiva das equações a seguir com precisão
e= 104
a) 2 cos(x) = ex/2
b) x56=0.
c) sen(x) = 0
d) cos(x) + 1 = 0
3. (0,5 pontos ) Resolva o sistema linear abaixo utilizando o método da Eliminação de Gauss
2x1+ 2x2+x3+x4= 7
x1x2+ 2x3x4= 1
3x1+ 2x23x32x4= 4
4x1+ 3x2+ 2x3+x4= 12
4. (0,5 pontos ) Calcule a fatoração LU, se possível:
1 1 1
2 1 1
3 2 0
5. (0,5 pontos ) Escreva um algoritmo para resolver um sistema linear triangular inferior.
6. (0,5 pontos ) Trabalhando com arredondamento para dois dígitos significativos em todas as operações, resolva o
sistema linear abaixo pelo método da Eliminação de Gauss, sem e com pivoteamento parcial.
(16x1+ 5x2= 21
3x1+ 2.5x2= 5.5
7. (1,5 pontos )
(a) Mostre que resolver AX =B, onde Aé matriz n×n,XeBsão matrizes n×m, é o mesmo que resolver m
sistemas do tipo Ax =b, onde Aé matriz n×n,xebvetores n×1.
1
pf2

Pré-visualização parcial do texto

Baixe Lista de Exercícios de Cálculo Numérico - Métodos Numéricos e outras Exercícios em PDF para Cálculo Numérico, somente na Docsity!

Segunda Lista de Exercícios de Cálculo Numérico

Deniel Corre

19 de maio de 2024

Responda apenas às questões de forma que a soma dos pontos totalize 5. Coloque as respostas em ordem sequencial, indicando claramente a qual questão cada resposta se refere, usando caneta azul ou preta.

  1. (1,0 pontos ) Considere um problema em sua área de interesse que envolve a resolução da equação f (x) = 0, onde f (x) descreve uma função para esse problema.

a) Utilize o método da bissecção para encontrar uma aproximação da solução da equação f (x) = 0 no intervalo [a, b], com uma precisão de 10 −^5. b) Utilize o método de Newton para encontrar uma aproximação da solução da equação f (x) = 0, partindo de um ponto inicial x 0.

  1. (1,0 pontos ) Use o método de Newton-Raphson para obter a menor raiz positiva das equações a seguir com precisão e = 10−^4

a) 2 cos(x) = ex/^2 b) x^5 − 6 = 0.

c) sen(x) = 0 d) cos(x) + 1 = 0

  1. (0,5 pontos ) Resolva o sistema linear abaixo utilizando o método da Eliminação de Gauss   

 

2 x 1 + 2x 2 + x 3 + x 4 = 7 x 1 − x 2 + 2x 3 − x 4 = 1 3 x 1 + 2x 2 − 3 x 3 − 2 x 4 = 4 4 x 1 + 3x 2 + 2x 3 + x 4 = 12

  1. (0,5 pontos ) Calcule a fatoração LU, se possível:  
  1. (0,5 pontos ) Escreva um algoritmo para resolver um sistema linear triangular inferior.
  2. (0,5 pontos ) Trabalhando com arredondamento para dois dígitos significativos em todas as operações, resolva o sistema linear abaixo pelo método da Eliminação de Gauss, sem e com pivoteamento parcial. ( 16 x 1 + 5x 2 = 21 3 x 1 + 2. 5 x 2 = 5. 5
  3. (1,5 pontos )

(a) Mostre que resolver AX = B, onde A é matriz n × n, X e B são matrizes n × m, é o mesmo que resolver m sistemas do tipo Ax = b, onde A é matriz n × n, x e b vetores n × 1.

(b) Usando o item (a), verifique que A−^1 pode ser obtida através da resolução de n sistemas lineares. (c) Entre o método da Eliminação de Gauss e a fatoração LU, qual o mais indicado para o cálculo de A−^1?

  1. (0,5 pontos ) Considere o sistema linear  

x 1 x 2 x 3

Verifique, usando eliminação gaussiana, que este sistema não tem solução. Qual será o comportamento do método de Gauss-Seidel?

  1. (1,0 pontos ) Responda às seguintes perguntas:

a) O que é interpolação? b) Segundo Ruggiero, em que situações a interpolação não é recomendada? c) Quais os tipos de interpolação estudados em sala de aula até 25 de maio de 2024?

  1. (1,0 pontos ) A velocidade do som na água varia de acordo com a temperatura. Usando os valores da tabela abaixo:

Temperatura (◦C) Velocidade (m/s)

  1. 0 1 , 552
  2. 3 1 , 548
  3. 9 1 , 544
  4. 4 1 , 538
  5. 0 1 , 532

Determine o valor aproximado da velocidade do som na água a 100 ◦C usando interpolação polinomial.

  1. (0,5 pontos ) Considere o polinômio de interpolação de Lagrange. Explique como ele pode ser utilizado para interpolar os dados da tabela acima e determine o polinômio de interpolação para os pontos dados.
  2. (0,5 pontos ) Explique a diferença entre interpolação linear e interpolação polinomial. Em quais situações uma pode ser preferida sobre a outra?
  3. (1,0 pontos ) Verifique, utilizando eliminação gaussiana, se o sistema linear abaixo possui solução. Em caso afirmativo, determine a solução: (^) 

x 1 x 2 x 3

Discuta o comportamento do método de Gauss-Seidel ao tentar resolver este sistema.