Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Lipogênese - formação do tecido adiposo, Resumos de Bioquímica

Processo de síntese de triacilglicerois

Tipologia: Resumos

2019
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 17/05/2019

leticia-soares-2
leticia-soares-2 🇧🇷

1 documento

1 / 6

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Lipogénese e síntese dos triacilgliceróis; Rui Fontes
Página 1 de 6
Lipogénese e síntese dos triacilgliceróis
1- Embora os ácidos gordos com número par de carbonos (a maioria) não sejam substratos para a síntese de
glicose, a glicose pode ser substrato para a síntese de ácidos gordos. Neste texto, quando não se
especificar o contrário, a palavra lipogénese será usada no seu sentido restrito: a síntese de palmitato a
partir da glicose. Contudo, com frequência, a palavra lipogénese é usada com significados mais amplos
podendo incluir todos os processos metabólicos que levam à formação de lipídeos (incluindo a
dessaturação e elongação de ácidos gordos e a esterificação). Quando se quer evidenciar a ideia de que
não se está a incluir estes últimos processos é frequente usar-se a expressão lipogénese de novo.
2- Comparativamente com outros tecidos, a lipogénese é mais activa no fígado, no tecido adiposo e na
glândula mamária activa. Nos músculos esqueléticos a lipogénese não existe porque não existe uma das
enzimas desta via metabólica: a síntase do palmitato. A metabolização do palmitato formado implica a
sua prévia “activação” por acção catalítica da sintétase de acil-CoA (ver equação 1). Quer o
palmitato sintetizado endogenamente quer os ácidos gordos que provêm da dieta podem, depois de
activados, servir como substratos na síntese de triacilgliceróis. Ao processo de formação de
triacilgliceróis chama-se esterificação.
ácido gordo + CoA + ATP acil-CoA + AMP + PPi (1)
3- No homem adulto, a lipogénese é, nas condições das dietas mistas mais comuns nos países sem
problemas de défice nutricional, uma via metabólica muito pouco activa; em geral, a massa de palmitato
formada endogenamente não chega a 5% da massa dos ácidos gordos da dieta. O destino metabólico
mais importante dos glicídeos é a conversão em glicogénio e, em última análise, a sua oxidação, não é a
conversão em ácidos gordos [1]. Contudo, a lipogénese pode ter relevância quando existe ingestão
elevada de glicídeos no contexto duma dieta pobre em lipídeos; se o valor calórico dos glicídeos da dieta
exceder a despesa energética, os glicídeos em excesso são convertidos em palmitato [1]. O acetil-CoA,
que é o substrato da lipogénese, forma-se na mitocôndria a partir do piruvato (produto da glicólise) por
acção catalítica da desidrogénase do piruvato. No entanto, as enzimas envolvidas na conversão da
acetil-CoA em palmitato estão no citoplasma e não na mitocôndria. O transporte de acetil-CoA da
mitocôndria para o citoplasma envolve a (1º) formação de citrato na mitocôndria (síntase do citrato: ver
equação 2), (2º) o transporte de citrato para o citoplasma (ver equação 3) e (3º) a regeneração de acetil-
CoA no citoplasma (ATP-citrato líase: ver equação 4).
acetil-CoA + oxalacetato + H2O citrato + CoA (reacção na mitocôndria) (2)
citrato (mitocôndria) citrato (citoplasma) (3)
citrato + CoA + ATP oxalacetato + acetil-CoA + ADP + Pi (reacção no citoplasma) (4)
4- A síntese do palmitato ocorre pela adição sucessiva de unidades de 2 carbonos ao grupo acetilo do
acetil-CoA. Estas unidades de 2 carbonos também têm origem no acetil-CoA mas a sua utilização requer
a prévia “activação” a malonil-CoA. A carboxílase de acetil-CoA (ver equação 5) é uma lígase que
contém como grupo prostético a biotina e que catalisa a formação de malonil-CoA. A reacção pode ser
entendida como a acoplagem de um processo exergónico (a hidrólise do ATP) com outro endergónico (a
de carboxilação da acetil-CoA). A síntese de malonil-CoA é o primeiro passo da lipogénese mas, mesmo
em células onde a lipogénese não é um processo relevante ou não existe (músculos esquelético e
cardíaco), a carboxílase de acetil-CoA tem um papel importante pois o malonil-CoA regula (inibe) a
oxidação dos ácidos gordos.
ATP + H2O + CO2 + acetil-CoA ADP + Pi + malonil-CoA (5)
5- A segunda enzima envolvida na síntese do palmitato é a síntase do palmitato (também designada de
síntese de ácidos gordos), uma enzima dimérica citoplasmática que contém como grupo prostético a 4’-
fosfopanteteína (um derivado do ácido pantoténico). A síntase do palmitato é um complexo
multienzímico que contém 7 actividades catalíticas distintas que operam sequencialmente. A síntese do
palmitato começa com a (1) transferência de um resíduo acetilo da acetil-CoA para um grupo tiol de um
resíduo de cisteína da síntase e (2) com a transferência do resíduo malonilo da malonil-CoA para outro
grupo tiol, o grupo tiol da 4’-fosfopanteteína. Seguidamente ocorre (3) a transferência do resíduo acetilo
pf3
pf4
pf5
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Lipogênese - formação do tecido adiposo e outras Resumos em PDF para Bioquímica, somente na Docsity!

Lipogénese e síntese dos triacilgliceróis

1- Embora os ácidos gordos com número par de carbonos (a maioria) não sejam substratos para a síntese de glicose, a glicose pode ser substrato para a síntese de ácidos gordos. Neste texto, quando não se especificar o contrário, a palavra lipogénese será usada no seu sentido restrito: a síntese de palmitato a partir da glicose. Contudo, com frequência, a palavra lipogénese é usada com significados mais amplos podendo incluir todos os processos metabólicos que levam à formação de lipídeos (incluindo a dessaturação e elongação de ácidos gordos e a esterificação). Quando se quer evidenciar a ideia de que não se está a incluir estes últimos processos é frequente usar-se a expressão lipogénese de novo.

2- Comparativamente com outros tecidos, a lipogénese é mais activa no fígado, no tecido adiposo e na glândula mamária activa. Nos músculos esqueléticos a lipogénese não existe porque não existe uma das enzimas desta via metabólica: a síntase do palmitato. A metabolização do palmitato formado implica a sua prévia “activação” por acção catalítica da sintétase de acil-CoA (ver equação 1). Quer o palmitato sintetizado endogenamente quer os ácidos gordos que provêm da dieta podem, depois de activados, servir como substratos na síntese de triacilgliceróis. Ao processo de formação de triacilgliceróis chama-se esterificação.

ácido gordo + CoA + ATP  acil-CoA + AMP + PPi (1)

3- No homem adulto, a lipogénese é, nas condições das dietas mistas mais comuns nos países sem problemas de défice nutricional, uma via metabólica muito pouco activa; em geral, a massa de palmitato formada endogenamente não chega a 5% da massa dos ácidos gordos da dieta. O destino metabólico mais importante dos glicídeos é a conversão em glicogénio e, em última análise, a sua oxidação, não é a conversão em ácidos gordos [1]. Contudo, a lipogénese pode ter relevância quando existe ingestão elevada de glicídeos no contexto duma dieta pobre em lipídeos; se o valor calórico dos glicídeos da dieta exceder a despesa energética, os glicídeos em excesso são convertidos em palmitato [1]. O acetil-CoA , que é o substrato da lipogénese, forma-se na mitocôndria a partir do piruvato (produto da glicólise) por acção catalítica da desidrogénase do piruvato. No entanto, as enzimas envolvidas na conversão da acetil-CoA em palmitato estão no citoplasma e não na mitocôndria. O transporte de acetil-CoA da mitocôndria para o citoplasma envolve a (1º) formação de citrato na mitocôndria ( síntase do citrato : ver equação 2), (2º) o transporte de citrato para o citoplasma (ver equação 3) e (3º) a regeneração de acetil- CoA no citoplasma ( ATP-citrato líase : ver equação 4).

acetil-CoA + oxalacetato + H 2 O  citrato + CoA (reacção na mitocôndria) (2) citrato (mitocôndria)  citrato (citoplasma) (3) citrato + CoA + ATP  oxalacetato + acetil-CoA + ADP + Pi (reacção no citoplasma) (4)

4- A síntese do palmitato ocorre pela adição sucessiva de unidades de 2 carbonos ao grupo acetilo do acetil-CoA. Estas unidades de 2 carbonos também têm origem no acetil-CoA mas a sua utilização requer a prévia “activação” a malonil-CoA. A carboxílase de acetil-CoA (ver equação 5) é uma lígase que contém como grupo prostético a biotina e que catalisa a formação de malonil-CoA. A reacção pode ser entendida como a acoplagem de um processo exergónico (a hidrólise do ATP) com outro endergónico (a de carboxilação da acetil-CoA). A síntese de malonil-CoA é o primeiro passo da lipogénese mas, mesmo em células onde a lipogénese não é um processo relevante ou não existe (músculos esquelético e cardíaco), a carboxílase de acetil-CoA tem um papel importante pois o malonil-CoA regula (inibe) a oxidação dos ácidos gordos.

ATP + H 2 O + CO 2 + acetil-CoA  ADP + Pi + malonil-CoA (5)

5- A segunda enzima envolvida na síntese do palmitato é a síntase do palmitato (também designada de síntese de ácidos gordos) , uma enzima dimérica citoplasmática que contém como grupo prostético a 4’- fosfopanteteína (um derivado do ácido pantoténico). A síntase do palmitato é um complexo multienzímico que contém 7 actividades catalíticas distintas que operam sequencialmente. A síntese do palmitato começa com a (1) transferência de um resíduo acetilo da acetil-CoA para um grupo tiol de um resíduo de cisteína da síntase e (2) com a transferência do resíduo malonilo da malonil-CoA para outro grupo tiol, o grupo tiol da 4’-fosfopanteteína. Seguidamente ocorre (3) a transferência do resíduo acetilo

para o carbono 2 do resíduo malonilo com libertação do CO 2 e a formação de aceto-acetil-enzima, (4) a redução dependente do NADPH do aceto-acetil-enzima a D -hidroxi-acil-enzima, (5) a desidratação do D-hidroxi-acil-enzima a ^2 -enoil-enzima e (6) a redução também dependente do NADPH do ^2 -enoil- enzima a acil-enzima. Após a adição de uma unidade de 2 carbonos ao acetilo o acil-enzima formado é o butiril-enzima (4C). A transferência do resíduo acilo ligado à 4’-fosfopanteteína para a cisteína e de um novo malonilo (do malonil-CoA) para a 4'-fosfopanteteína permite a continuação da síntese em sucessivos ciclos de adição de 2 carbonos. Na fase de palmitil-enzima (C16) ocorre (7) a hidrólise (tioestérase) e a libertação de palmitato não esterificado. Partindo de acetil-CoA, em cada ciclo catalítico (de 6 passos) são acrescentados 2 carbonos e, ao fim de 7 ciclos, dá-se uma hidrólise que liberta palmitato (C16). Em cada ciclo o dador dos 2 carbonos acrescentados é o malonil-CoA e o carbono 2 do resíduo de malonilo liga-se no carbono carboxílico do ácido gordo saturado intermediário (com sucessivamente 2, 4, 6, 8, 10, 12 e 14 carbonos) que é substrato em cada ciclo.

6- A equação soma relativa à actividade da síntase do palmitato pode ser escrita:

7 malonil-CoA + acetil-CoA + 14 NADPH  palmitato + 6 H 2 O + 14 NADP +^ + 7 CO 2 + 8 CoASH (6)

Durante o processo catalisado pela síntase do palmitato ocorre a libertação dos CO 2 que haviam sido usados na carboxilação do acetil-CoA a malonil-CoA (ver equações 5 e 6). Na actividade da síntase de palmitato, o passo em que ocorre a libertação do CO 2 é um passo exergónico que contribui para que o processo reactivo global evolua no sentido da formação do palmitato e não em sentido inverso. Embora todos os carbonos do palmitato sintetizado provenham do resíduo acetilo do acetil-CoA, apenas os carbonos 15 e 16 resultam directamente do acetil-CoA que não foi previamente (via carboxílase de acetil-CoA) convertido em malonil-CoA.

7- Se estritamente descrito pelas reacções representadas pelas equações 2-4, o processo de transporte de acetil-CoA da mitocôndria para o citoplasma seria, obviamente, insustentável: representam um processo cataplerótico sem que, simultaneamente, ocorra um outro anaplerótico. O processo descrito levaria ao esgotamento do oxalacetato mitocondrial e à sua acumulação no citoplasma. Uma via metabólica que poderá ter relevância no processo anaplerótico compensador inclui a acção da enzima málica: o oxalacetato é reduzido a malato ( desidrogénase do malato ; ver equação 7); de seguida, o malato é oxidado a piruvato ( enzima málica ; também designada de desidrogénase do malato dependente do NADP +^ ; ver equação 8) e, por último, o piruvato entra para a mitocôndria onde é convertido em oxalacetato pela acção da carboxílase do piruvato (equação 9). Esta via permite, simultaneamente, fornecer parte dos equivalentes redutores (na forma de NADPH) para a actividade da síntase do palmitato e “transportar” oxalacetato do citoplasma para a matriz.

oxalacetato + NADH  malato + NAD+^ (7) malato + NADP +^  piruvato + CO 2 + NADPH (8) piruvato + ATP + CO 2  oxalacetato + ADP + Pi (9)

8- Por mole de palmitato sintetizado 14 moles de NADPH oxidam-se a NADP +^ (ver equação 6). Assim, mesmo que admitamos que a via metabólica descrita pelas equações 7-9 é a única envolvida no “transporte” de oxalacetato do citoplasma para a mitocôndria, a via permite formar apenas 8 NADPH ( por cada acetil-CoA transportado) por mole de palmitato sintetizado. Para além da enzima málica (ver equação 8) existem outras enzimas citoplasmáticas envolvidas na redução do NADP +^ e que têm relevância na lipogénese. Na via das pentoses-fosfato, a redução do NADP+^ ocorre por acção catalítica da desidrogénase da glicose-6-P e da desidrogénase do 6-fosfogliconato (ver equações 10 e 11) mas esta redução também pode resultar da acção da desidrogénase do isocitrato citoplasmática (ver equação 12). Dado que a glicose é o combustível da via das pentoses-fosfato e que, quer o malato, quer o isocitrato (intermediários do ciclo de Krebs) se formam (via carboxílase do piruvato) a partir da glicose, pode dizer-se que, para além de fornecer o substrato da lipogénese (acetil-CoA) a glicose é também essencial no processo de formação do agente redutor pertinente no processo: o NADPH.

efeito activador poderá depender da desfosforilação hidrolítica dos resíduos aminoacídicos fosforilados pela acção da AMPK e da fosforilação de outros resíduos [5-6].

13- Os ácidos gordos saturados mais abundantes nos mamíferos são o palmítico (16:0) e o esteárico (18:0). O ácido esteárico pode formar-se endogenamente a partir de ácido palmítico por acção de enzimas do retículo endoplasmático que catalisam a adição de dois carbonos (do malonil-CoA) ao palmitil-CoA. Pela adição sucessiva de unidades de dois carbonos no carbono 1 de ácidos gordos ( elongação ) podem formar-se endogenamente ácidos gordos com um número de carbonos superior a 16 (por exemplo, formação de estearato a partir de palmitato). O processo de elongação envolve enzimas com actividades catalíticas semelhantes às que foram referidas para a síntase do palmitato. O dador da unidade de dois carbonos é também o malonil-CoA e o agente redutor o NADPH. No entanto, no caso da elongação existem para cada um dos passos do processo diferentes enzimas e os intermediários libertam-se em cada passo como derivados ligados ao CoA (e não à enzima) [2]. O processo parte de um acil-CoA em que o acilo tem n carbonos gerando outro acil-CoA com n+2 carbonos: a equação que descreve a elongação do palmitil-CoA a estearil-CoA é a seguinte:

palmitil-CoA + malonil-CoA + 2 NADPH  estearil-CoA + 2 NADP+^ + CoA + H 2 O + CO 2 (13)

14- No retículo endoplasmático podem também formar-se ácidos gordos insaturados e a reacção é catalisada por sistemas enzímicos genericamente designados como dessatúrases de acil-CoA. O processo de dessaturação envolve uma cadeia de oxiredútases (que inclui o citocromo b5) em que o O 2 funciona como oxidante último do acil-CoA e do NADPH (ou do NADH). O somatório dos processos pode ser esquematizado:

acil-CoA + O 2 + NADH ou NADPH  acil-CoA insaturado + 2 H 2 O + NAD+^ ou NADP +^ (14)

Existem dessatúrases com diferentes especificidades no que se refere ao carbono onde a dupla ligação é introduzida. A dessatúrase 9 (também designada de dessatúrase do estearil-CoA ) catalisa a conversão do ácido esteárico (18:0) em oleico (18:1;9) e do palmítico (16:0) em palmitoleico (16:1;9). Outras dessatúrases são a dessatúrase6 e a dessatúrase5 que estão envolvidas na introdução de novas duplas ligações em ácidos gordos poli-insaturados. Nos ácidos gordos poli-insaturados naturais entre duas duplas ligações consecutivas há sempre um grupo metileno (…CH=CH -CH 2 - CH=CH…).

15- No caso dos mamíferos não é possível a introdução de duplas ligações em carbonos com número superior ao carbono 9. Assim, os ácidos linoleico (18:2;9,12) e o ácido -linolénico (18:3;9,12,15) não são sintetizados nas células dos mamíferos e dizem-se essenciais ou nutricionalmente indispensáveis. O ácido linoleico é um exemplo de ácido gordo da série 6 (ómega 6). Nos ácidos gordos 6 a dupla ligação que está mais distante do grupo carboxílico situa-se entre o 6º e o 7º carbono a contar do fim; no caso do ácido linoleico o carbono 6 corresponde ao carbono 13. O ácido -linolénico é um exemplo de ácido gordo da série 3; ou seja, a dupla ligação mais distante do grupo carboxílico situa-se entre o 3º e o 4º carbono a contar do fim.

16- Nos mamíferos, é possível inter-converter diferentes ácidos gordos 6 entre si (ou diferentes 3 entre si) mas não é possível converter ácidos gordos de uma série na outra nem formar 3 ou 6 a partir de saturados. Quando se discutem inter-conversões envolvendo ácidos gordos insaturados a “nomenclatura ” tem vantagens relativamente à que ordena os carbonos considerando o carbono 1 o carbono carboxílico (nomenclatura clássica). Quando ocorre elongação o número de carbonos de um ácido gordo aumenta 2 carbonos (que se ligam ao carbono que era originalmente o carboxílico) e, na nomenclatura clássica, o número associado aos carbonos onde existiam duplas ligações aumenta de igual modo; os carbonos continuam os mesmos mas passam a ter um número diferente. No entanto, explicando a preferência pela “nomenclatura ” quando se tratam destes temas, a numeração  não é afectada.

17- O ácido araquidónico (20:4;5,8,11,14) é um ácido gordo 6 e é precursor na síntese de eicosanoides 2 e do neurotransmissor anandamida. O ácido araquidónico (6; 20:4) pode formar-se nos mamíferos a partir do linoleico (6; 18:2), por acção sequenciado da (1) dessatúrase 6, (2) de elongação e (3) da dessatúrase 5. A dessaturação no carbono 6 (ver equação 15) forma o ácido -linolénico (18:3;6,9, ou 6; 18:3), que, elongado em 2 carbonos (ver equação 16), origina o ácido eicosatrienóico da série  6 (20:3;8,11,14 ou 6; 20:3); a dessaturação, agora no carbono 5, origina o ácido araquidónico (ver equação 17). O EPA ( á cido e icosa- p enta-enoico, 20:5;5,8,11,14,17 ou 3, 20:5) é, tal como o - linolénico (3; 18:3), um ácido 3; forma-se numa sequência de reacções iguais às referidas para o caso do ácido araquidónico mas neste caso partindo do ácido -linolénico. Admitindo que o NADH não intervém, a equação 18 é a que representa o somatório do processo de síntese de eicosa-penta-enoil-CoA a partir de -linolenil-CoA. De facto, em qualquer dos casos, quer os substratos quer os intermediários das vias de conversão são sempre ácidos gordos activados: os acis-CoA respectivos.

linoleil-CoA + O 2 + NADH ou NADPH  -linolenil-CoA + 2 H 2 O + NAD +^ ou NADP +^ (15) -linolenil-CoA + malonil-CoA + 2 NADPH  eicosatrienoil-CoA + 2 NADP +^ + CoA + H 2 O +CO 2 (16) eicosatrienoil-CoA + O 2 + NADH ou NADPH  araquidonil-CoA + 2 H 2 O + NAD +^ ou NADP +^ (17) -linolenil-CoA + 2 O 2 + 4 NADPH + malonil-CoA  eicosa-penta-enoil-CoA + 5 H 2 O + 4 NADP +^ + CoA + CO 2 (18)

18- Durante a digestão intestinal dos triacilgliceróis (os mais abundantes lipídeos da dieta) forma-se maioritariamente 2-monoacilglicerol e ácidos gordos que são absorvidos. Os ácidos gordos de cadeia longa e muito longa são esterificados nos enterócitos regenerando-se os triacilgliceróis: os ácidos gordos são activados ( sintétase de acil-CoA: ver equação 1) e os resíduos acilo dos acis-CoA transferidos para as posições 1 e 3 do 2-monoacilglicerol por acção catalítica de duas transférases de acilo. Estes acis-CoA vão a seguir incorporar-se nos quilomicra.

19- No fígado, no rim, na glândula mamária activa e no tecido adiposo o aceitador de resíduos acilo no processo de síntese de triacilgliceróis não é o 2-monoacilglicerol mas o glicerol-3-P. No tecido adiposo não existe cínase do glicerol (ver equação 19) e todo o glicerol-3-P resulta da redução da dihidroxiacetona-P ( desidrogénase do glicerol-3-P : ver equação 20). Nos casos do fígado, do rim e da glândula mamária activa, a presença da cínase do glicerol permite a formação de glicerol-3-P a partir de glicerol e ATP. Na via da síntese dos triacilgliceróis, o glicerol-3-P aceita (por acção catalítica de duas transférases de acilo que actuam sequencialmente) dois resíduos acilo de acis-CoA formando-se, primeiro, o 1-acil-glicerol-3-fosfato e a seguir o 1,2-diacilglicerol-fosfato ( ou ácido fosfatídico ou fosfatidato ); ver equações 21 e 22. De seguida, a fosfátase do ácido fosfatídico catalisa a formação do 1,2-diacilglicerol (ver equação 23) que aceita outro acilo formando-se o triacilglicerol (ver equação 24). A equação soma que descreve a síntese de triacilglicerol (esterificação) a partir de glicerol-3-P e acis- CoA é a equação 25.

ATP + glicerol  glicerol-3-P + ADP (19) dihidroxiacetona-P + NADH  glicerol-3-P + NAD +^ (20)

glicerol-3-P + acil-CoA  1-acil-glicerol-3-P + CoA (21) 1-acil-glicerol-3-P + acil-CoA  1,2-diacil-glicerol-3-P (= ácido fosfatídico) + CoA (22) ácido fosfatídico + H 2 O  1,2-diacilglicerol + Pi (23) acil-CoA + 1,2-diacilglicerol  triacilglicerol + CoA (24) glicerol-3-P + 3 acil-CoA + H 2 O  triacilglicerol + 3 CoA + Pi (25)

Os triacilgliceróis constituem a mais abundante forma de reserva de energia num indivíduo normal e encontram-se maioritariamente no tecido adiposo (cerca de 95% dos lipídeos de um homem jovem

(^2) Eicosanoides são substâncias (prostaglandinas, tromboxanos, leucotrienos e lipoxinas) formadas a partir de ácidos gordos

poli-insaturados com 20 carbonos que se libertam em muitas células do organismo e que provocam efeitos interagindo com receptores situados na membrana celular das mesmas células onde se libertam (sinalização autócrina) ou em outras células da proximidade (sinalização parácrina).