





Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Este documento aborda os conceitos básicos de funções matemáticas, incluindo seus tipos, domínio, intervalo e alguns exemplos. Além disso, discutimos aplicativas práticas de funções em diferentes contextos.
Tipologia: Exercícios
1 / 9
Esta página não é visível na pré-visualização
Não perca as partes importantes!
[ DOMAIN, RANGE, PERIOD, INVERSE, EVEN or ODD ]
one & only one b B such that ordered pair (a, b) f. Denoted f : A B
A is called Domain B is called Co domain
b is called image of a under f Range : set of images of f
1-1 or injective : If for x 1 , x 2 A ; x 1 x 2 f(x 1 ) f(x 2 )
Onto or surjective : If for all b B there exists a A such that f(a) = b
Into : If there is at least one b B for which there is no a A such that f(a) = b
Bijective : If a function is both 1-1 & onto then it is known as bijective
IDENTITY FUNCTION : If f (x) = x for x R
EVEN & ODD FUNCTIONS f (-x) =
f(x) ODD
f(x) EVEN
Number of 1 – 1 functions from A to B are
0 if m n
P if m n n
m
m
r 1
n r
m r m 1 C r
NOTE : If B contains 2 elements then number of onto functions is 2 n^ – 2
Total number of functions is m n
'log' is involved in many ways so let's be thorough about it
log x is defined for x > 0 only
logA B = x means B = A x
= f - og -
from A to B is
(a) 360 (b) 6^4
(c) 4^6 (d) 120
from A to B is
(a) 23 (b) 30
(c) 12 (d) N/T
a contains 106 elements is
(a) 106! (b) (106)^2
(c) 2 106 (d) 2 106
(a) R (b) [0, )
(c) {-/2, /2] (d) N/T
10
is
(a) [-3, -2] – {- 2.5} (b) [0,1] – {.5}
(c) [-2, 1) – {0} (d) N/T
(a) (0,1] (b) (0, )
(c) (.5, ) (d) N/T
(a) {2,4} (b) {1,4}
(c) {2, 6} (d) None.
x + sec - x
(a) [ - 1, 1] (b) R – [-1, 1]
(c) {- 1, 1} (d) None.
(a) N – {1} (b) R – {1}
(c) R - I (d) N/T
1 / 2 2
3 4
x 3 x log
is
(a) ( -1 , 4 )
(b) ( 1 , 4 )
(c) ( -∞ , -1 ) ( 4 ,∞ )
(d) ( -∞ , 0 ) ( 3 ,∞ )
183 x 2 x 3
15 x C P
is
(a) {2, 3} (b) {3,4,}
(c) {2, 3 ,4} (d) {2, 3,4,5}
2 is
(a) (0, ) (b) (1, )
(c) (0,1) ( 1 ,) (d) N/T
(a) 2 < x < 4 (b) x < 4
(c) x > 4 (d) 5 >x > 4.
x ) , {x} denotes
fractional part , is
(a) R (b) R - I
(c) ( 1 , ∞ ) - I (d) ( -∞ , 1) – I
is
(a) [ 0 , 2] (b) [0,1]
(c) [ 1, 2] (d) N/T
x log 3 is
(a) [-1,9] (b) [1,9]
(c) [-9,1] (d) N/T
(a) (0, ) (b) (-, 0)
(c) {0} (d) N/Ts
2 |x| (^) + (log ( - x + 3))-1 (^) is
(a) (-2, 6) (b) [-6, 2] [2,3]
(c) [-6, 2] (d) N/T
(a) (0, ) (b) (1, )
(c) (0,1) ( 1 ,) (d) N/T
2
2
1
2 is:
(a) [0, 16] (b) (1, )
(c) (1, 16) (d) [1, 16]
183 x 2 x 3
15 x C P
is
(a) {2, 3} (b) {3,4,}
(c) {2, 3 ,4} (d) {2, 3,4,5}
1 x cosec 1 x
1 x 1
(^) is
(a) [- / 2 /2] (b) { / 2}
(c) {0, / 2} (d) N/T
(a) [-1, 1] (b) {-1, 1}
(c) (-1, 1) (d) N/T
(a) [-1, 1] (b) {-1, 1}
(c) (-1, 1) (d) N/T
(a) 0 (b) {0}
(c) {-1,1} (d) N/T
(a) [-1, 1] (b) {-1, 1}
(c) (-1, 1) (d) N/T
2
e e
x x is
(a) R (b) [0, )
(c) [1, ) (d) None.
e
x
(a) ( 0 ,∞ ) (b) [ 0 , ∞ )
(c) ( 1, ∞ ) (d) [1 , ∞ )
(a) [ 3, -5 ] (b) [ - √34 , √34 ]
(c) [ 5 , √34 ] (d) [ -3 , 5 ]
e e
x x is
(a) many one onto (b)neither 1-1 nor onto
(c) one-one onto (d) one-one into
(a) [ d+a , d+2a ] (b) [ a-d , d+a ]
(c) [ d+a , a-d ] (d) [d-a , d+a ]
x
(a) [-1, 1] (b) R
(c) (-1, 1) (d) N/T
9 x P (^)
is
(a) {5,7} (b) {1,2}
(c) {3,4,…7} (d) N/T
is
(a) [1/3,1] (b) [1/2,2]
(c) [1/2,1] (d) N/T
x cos 3
x is
(a) 12 (b) 16
(c) 24 (d) N/T
2 x 3 is
(a) 2 (b) 6
(c) 6 2 (d) None
(a) π (b) 4π
(c) 2π (d) 8π.
(c) 5 - (1+sin^2 x)^3 (d) N/T
(a) 0 (b) 24-2
(c) 4 -24 (d) N/T
(a)
e cosx
x
x
(b) x^2 ln ( x 1 x )
6 3
x
x
1
n x
x
x a
a fx f is even, then n equals
(a) 2 (b) 2/
(c) 1/4 (d) -1/
upto infinite terms is ( GIF )
(a) 2006 (b) 2007
(c) 2008 (d) 2009
1 f( 1 /x)
f(x) f( 1 /x) f(x)
& f ( 2 ) = 17 then
1
1
f(x) dx is equal to
(a) 0 (b) 5/
(c) 12/5 (d) 6/
( cos x )^0 + ( tan x )^0 is
(a) 2π (b) π
(c) π /2 (d) Does not exist
(a) 1-1 into (b) Many one into
(c) 1-1 onto (d) N/T
x
e 1
xe
x
x
is
(a) Even (b) Odd
(c) Neither (d) Both
sin x
0
2 tdt then period of f / ( x ) is
(a) π/2 (b) π
(c) 2π (d) 3π/
2πx | - 8x is
(a) 1/2 (b) 1
(c) 1/4 (d) N/T
is a
(a) 1 – 1, on to (b) 1 – 1, into
(c) Many – 1, onto (d) N/T
(a) 4 9 (b) 3 4
(c) 2^9 (d) N/T
(a) 24 (b) 25
(c) 26 (d) N/T
(a) 498 (b) 499
(c) 500 (d) 501
(a) 0 if 0 (b) 0 for all
(c) 0 for all (d) N/T
(a) 8
x y
2 2 (b) 4
x y
2 2
(c) 8
x y
2 2 (d) N/T
(a) xn^ (b) a – x
(c) x (d) n x.
(a) 1 – 1 & on to (b) 1 – 1, into
(c) 1 + 1 into (d) neither 1 1nor into
f(xy) y
x f 2
is
(a) 1 (b) ½
(c) – 2 (d) N/T
(a) f(/2) = 0 (b) f( ) = -
(c) f(- ) = 0 (d) N/T
surjective then B is
(a) [1,4] (b) [1,2]
(c) [1,∞) (d) N/T
(a) 2 (b) 3
(c) 1 (d) Does not exist
2
1
sin sin x
x x is
(a) (0, ) (b) (-∞, )
(c) [ 2nπ , (2n+1) π ], n I (d) N/T
(a) π (b) π/
(c) π/2 (d) N/T
x x
e
x
is
(a) [1,e] (b) [1,∞)
(c) ( 0, ∞) (d) N/T
(a) 1-1 , onto (b) many 1, into
(c) 1-1, into (d) many 1, onto
(a) [0, π] (b) [0, π/2]
(c) [- π/4, π/4] (d)N/T
(x) = x + l, g (x) = x^2 - 1 then g { f (3)}will be
(a) 9 (b)
(c) 15 (d) 18
, x 1 then for what value
of α , fof ( x ) is identity function
(a) √2 (b) - √
(c) 1 (d) -
n (^) n a x , x > 0 then on its
domain f( x) is
(a) only injective (b) only surjective
(c) bijective (d) N/T
( f ( x) ) is invertible in domain
(a) [0, π/2 ] (b) [- π/2 , π /2]
(c) [ - π/4 , π /4 ] (d) [ 0, π ]
3, 4, 5} such that f (i) ≤ f (j) whenever i <j is
(a) 60 (b) 50
(c) 30 (d) 35.