






Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
A fórmula geral da produção de glicose pela fotossíntese dos eucariotos e cianobactérias é: 6 CO2 + 12 H2O. C6H12O6 + 6 O2 + 6 H2O. Essa equação mostra que, ...
Tipologia: Notas de estudo
1 / 10
Esta página não é visível na pré-visualização
Não perca as partes importantes!
A fotossíntese é o principal processo autotrófico e é realizada pelos seres clorofilados, representados porplantas, alguns protistas, bactérias fotossintetizantes e cianobactérias. Na fotossíntese realizada pelos seres fotossintetizantes, com exceção das bactérias, gás carbônico (CO 2 ) e água (H 2 0) são usados para a síntese de carboidratos, geralmente a glicose. Nesse processo há a formação de oxigênio (O 2 ), que é liberado para o meio. A fotossíntese realizada pelas bactérias fotossintetizantes difere em muitos aspectos da realizada pelos demais organismos fotossintetizantes, como veremos a seguir. A fórmula geral da produção de glicose pela fotossíntese dos eucariotos e cianobactérias é: 6 CO 2 + 12 H 2 O C 6 H 12 O 6 + 6 O 2 + 6 H 2 O Essa equação mostra que, na presença de luz e clorofila, o gás carbônico e a água são convertidos em uma hexose – neste exemplo, a glicose - havendo liberação de oxigênio. Os seres fotossintetizantes são fundamentais para a manutenção da vida em nosso planeta, pois são a base da maior parte das cadeias alimentares e produzem oxigênio, gás mantido na atmosfera em concentrações adequadas graças principalmente a atividade fotossintética. Origem do oxigênio e fotossíntese bacteriana O oxigênio liberado pela fotossíntese realizada pelos eucariontes e pelas cianobactérias provém da água, e não do gás carbônico, como se pensava antigamente. O primeiro pesquisador a propor isso foi Cornelius Van Niel, na década de 1930, quando estudava bactérias fotossintetizantes. Ele verificou que as bactérias vermelhas sulfurosas (ou tiobactérias púrpuras) realizavam uma forma particular de fotossíntese em que não havia necessidade de água nem formação de oxigênio. Essas bactérias usam gás carbônico e sulfeto de hidrogênio (H 2 S) e produzem carboidrato e enxofre. Van Niel escreveu, então, a fórmula geral da fotossíntese realizada por essas bactérias: Fotossíntese bacteriana 6 CO 2 + 2 H 2 S CH 2 O + H 2 O + 2 S Foi a compreensão desse processo de fotossíntese que levou o pesquisador a propor a equação geral da fotossíntese: 6 CO 2 + 2 H 2 A CH 2 O + H 2 O + 2 A Essa equação mostra que H 2 A pode ser a água (H 2 O) ou o sulfeto de hidrogênio (H 2 S) e evidencia que, se for água ela é a fonte de oxigênio na fotossíntese. Essa interpretação foi confirmada posteriormente, na década de 1940, por experimentos em que pesquisadores forneciam às plantas água cujo oxigênio era de massa 18 (O^18 , isótopo pesado do oxigênio) em vez de 16 (O^16 ), como o oxigênio da água comum. Eles verificaram que o oxigênio liberado pela fotossíntese era o O^18 , corroborando a interpretação de Van Niel. Ficou comprovado, então, que o oxigênio liberado durante a fotossíntese dos eucariontes e das cianobactérias provém da água e não do gás carbônico.
Nos organismos mais simples, como as cianobactérias, a fotossíntese ocorre no hialoplasma, que é onde se encontram diversas moléculas de clorofila, associadas a uma rede interna de membranas, que são extensões da membrana plasmática. Recorde que as cianobactérias são procariontes e não possuem organelas dotadas de membranas. Por outro lado, nos organismos eucariontes a fotossíntese ocorre totalmente no interior do cloroplasto.
Os Cloroplastos Os plastos ou plastídeos é um grupo de organelas específicas de células vegetais, que possuem características semelhantes com as mitocôndrias como: membrana dupla, DNA próprio e origem endosimbionte. Os plastos desenvolvem-se a partir de proplastídeos, que são organelas pequenas presentes nas células imaturas dos meristemas vegetais e desenvolvem-se de acordo com as necessidades da célula, surgindo diferentes tipos de plastos como: os cromoplastos (que contêm pigmentos), os leucoplastos (sem pigmento), etioplastos (que se desenvolvem na ausência de luz), amiloplastos (que acumulam amido como substância de reserva), proteoplastos (que armazenam proteína) e os oleoplastos (acumulam lipídeos). Os cloroplastos são um tipo de cromoplastos que contém pigmento chamado clorofila , que são capazes de absorver a energia eletromagnética da luz solar e a convertem em energia química por um processo chamado fotossíntese. As células vegetais e as algas verdes possuem um grande número de cloroplastos, de forma esférica ou ovóide, variando de tamanho de acordo com o tipo celular, e são bem maiores que as mitocôndrias.
Os pigmentos ligados a diferentes proteínas e lipídeos nas membranas dos tilacóides granares e estromáticos formam sistemas complexos de proteínas-clorofila denominados fotossistemas. Há dois tipos de fotossistemas: Fotossistema I: localizado na região da membrana voltada para o estroma, são as menores partículas intramembranosas. Fotossistema II: localizado em tilacóides granares, formado por partículas maiores. Sistema genético dos cloroplastos O genoma plastidial consiste em uma pequena molécula de DNA circular , com características muito semelhantes com das mitocôndrias e das bactérias. O DNA dos plastos ocorre em maior quantidade e é mais complexo do que da mitocôndria. Existem 30 a 200 cópias de DNA por organela contendo aproximadamente 120 genes. O sequenciamento genético dos cloroplastos de várias plantas levou a identificação de muitos desses genes. Eles transcrevem todos os RNAs ribossômicos que compõem os plastoribossomos e 30 tipos diferentes de RNA transportadores. Esse genoma codifica ainda 20 proteínas ribossômicas, 30 proteínas que funcionam na fotossíntese e algumas subunidades de RNA polimerase (proteínas envolvidas na expressão gênica). Mas mesmo sintetizando suas próprias proteínas, cerca de 90% das proteínas dos cloroplastos são codificadas pelos genes nucleares que são importadas do citosol para a organela. Luz - Componente indispensável da fotossíntese A luz que banha a Terra é componente do amplo espectro de radiações eletromagnéticas provenientes do Sol, e que se propagam como ondas. O modo como essas ondas se propagam depende da energia: quanto mais energia uma onda tiver, menor será seu comprimento. Dentro do amplo espectro de radiações eletromagnéticas, apenas uma pequena parte é visível aos nossos olhos – são as radiações cujos comprimentos de onda vão de 380 a 760 nanômetros. Essas estreitas faixas de comprimento de onda da luz visível corresponde às diferentes cores que são observadas quando se faz passar a luz por um prisma, o que provoca a dispersão (separação) dessas diferentes radiações.
Outra característica importante da luz é a sua natureza corpuscular , ou seja, a luz é característica por incidir na forma de corpúsculos, conhecidos como fótons. Os fótons são considerados “pacotes” de energia associados a cada comprimento de onda partícula. Luz de pequeno comprimento de onda, como a luz violeta, possui fótons altamente energéticos. Luz de grande comprimento de onda, como a vermelha e a laranja, possuem fótons pouco energéticos. Assim, cada radiação luminosa, cada comprimento de onda luminosa, é portadora de uma certa energia. E o fato notável é que as plantas aproveitam essa energia para a produção de matéria orgânica na fotossíntese. Como isso pode ser provado? Se um feixe de luz branca passar por um prisma se decompondo em diversas cores, e em cada cor colocarmos um vidro cheio de água, lacrado, e com uma plantinha dentro, veremos com o decorrer do tempo que as plantas submetidas às radiações vermelha e azul mostram o mais alto grau de atividade fotossintética. Isso pode ser percebido pelo tamanho da bolha de oxigênio que se formou em cada vidro. Pigmentos fotossintetisantes O termo "pigmento" significa substância colorida. A cor do pigmento fotossintetizante depende das faixas do espectro da luz visível que ele absorve ou reflete. A clorofila, que dá a cor verde característica da maioria dos vegetais, absorve muito bem a luz nas faixas do vermelho e do violeta, refletindo a luz verde. Como a luz refletida é a que atinge os nossos olhos, essa é a cor que vemos, ao olharmos para uma folha. O perfil de absorção de luz de uma substância é o seu espectro de absorção. Todas as células fotossintetizantes, exceto as bacterianas, contêm 2 tipos de clorofila , e um deles sempre é a clorofila a. O segundo tipo de clorofila geralmente é a clorofila b (nos vegetais superiores) ou a clorofila c (em muitas algas). Esses diversos tipos de clorofila diferem quanto à faixa do espectro da luz visível na qual cada uma delas capta luz com mais eficiência. As clorofilas a e b possuem espectros de absorção de luz ligeiramente diferentes, como mostra o gráfico a seguir: Podemos verificar, analisando o gráfico, que ambas as clorofilas possuem dois picos de absorção: um mais elevado, na faixa do violeta, e um outro menor, na faixa do vermelho. Os carotenóides são pigmentos acessórios. Eles absorvem luz em faixas um pouco diferentes das faixas das clorofilas. A presença desses pigmentos acessórios faz com que muitas folhas tenham cores diferentes do
Você poderá perguntar: qual a vantagem desse ciclo de transporte de elétrons? A resposta é que ao efetuar o retorno para a molécula de clorofila, a partir dos citocromos, os elétrons liberam energia, pois retornam aos seus níveis energéticos originais. E essa energia é aproveitada para a síntese de moléculas de ATP, que serão utilizadas na fase escura da fotossíntese. Perceba que o caminho executado pelos elétrons é cíclico. Por esse motivo, costuma-se denominar essa via de fotofosforilação cíclica, devido à ocorrência de síntese de inúmeras moléculas de ATP em um processo cíclico, com a participação da luz e de moléculas de clorofila. Ao mesmo tempo que isso ocorre, moléculas de água – ao serem atingidas pela luz do Sol – são “quebradas” (usa-se o termo “fotólise da água” para designar a quebra das moléculas de água) e liberam prótons (H+) , elétrons (e-) e moléculas de oxigênio. Os prótons são captados por moléculas de NADP, que se convertem em NADPH 2 ; moléculas de oxigênio são liberados para o meio; e os elétrons voltam para a clorofila, repondo aqueles que ela perdeu no início do processo. Fase escura ou química: Produção de Glicose Nessa fase, a energia contida nos ATP e os hidrogênios dos NADPH 2 , serão utilizados para a construção de moléculas de glicose. A síntese de glicose ocorre durante um complexo ciclo de reações (chamado ciclo das pentoses ou ciclo de Calvin-Benson ), do qual participam vários compostos simples. Durante o ciclo, moléculas de CO 2 unem-se umas as outras formando cadeias carbônicas que levam à produção de glicose. A energia necessária para o estabelecimento das ligações químicas ricas em energia é proveniente do ATP e os hidrogênio que promoverão a redução dos CO 2 são fornecidos pelos NADPH 2. Veja com mais detalhes o ciclo de Calvin O Ciclo de Calvin O ciclo começa com a reação de uma molécula de CO 2 com um açúcar de cinco carbonos conhecido como ribulose difosfato catalisada pela enzima rubisco (ribulose bifosfato carboxilase/oxigenase, RuBP ), uma das mais abundantes proteínas presentes no reino vegetal. Forma-se, então, um composto instável de seis carbonos, que logo se quebra em duas moléculas de três carbonos ( moléculas de ácido 3-fosfoglicérico ou 3 - fosfoglicerato , conhecidas como PGA ). O ciclo prossegue até que no final, é produzida uma molécula de glicose e é regenerada a molécula de ribulose difosfato.
Note, porém, que para o ciclo ter sentido lógico, é preciso admitir a reação de seis moléculas de CO 2 com seis moléculas de ribulose difosfato, resultando em uma molécula de glicose e a regeneração de outras seis moléculas de ribulose difosfato. A redução do CO 2 é feita a partir do fornecimento de hidrogênios pelo NADH 2 e a energia é fornecida pelo ATP. Lembre- se que essas duas substâncias foram produzidas na fase clara. O esquema apresentado é uma simplificação do ciclo de Clavin: na verdade, as reações desse ciclo se parecem com as que ocorrem na glicólise, só que em sentido inverso. É correto admitir, também, que o ciclo origina unidades do tipo CH 2 O, que poderão ser canalizadas para a síntese de glicose, sacarose, amido e, inclusive, aminoácidos, ácidos graxos e glicerol. Fatores que influenciam a fotossíntese A intensidade com a qual uma célula executa a fotossíntese pode ser avaliada pela quantidade de oxigênio que ela libera para o ambiente, ou pela quantidade de CO 2 que ela consome. Quando se mede a taxa de fotossíntese de uma planta, percebe-se que essa taxa pode aumentar ou diminuir, em função de certos parâmetros. Esses parâmetros são conhecidos como fatores limitantes da fotossíntese. A fotossíntese tem alguns fatores limitantes, alguns intrínsecos e outros extrínsecos. Fatores limitantes intrínsecos Disponibilidade de pigmentos fotossintetizantes Como a clorofila é a responsável principal pela captação da energia limunosa, a sua falta restringe a capacidade de captação da energia e a possibilidade de produzir matéria orgânica. Disponibilidade de enzimas e de cofatores Todas as reações fotossintéticas envolvem a participação de enzimas e de co-fatores, como os aceptores de elétrons e os citocromos. A sua quantidade deve ser ideal, para que a fotossíntese aconteça com a sua intensidade máxima.
Intensidade luminosa Quando uma planta é colocada em completa obscuridade, ela não realiza fotossíntese. Aumentando-se a intensidade luminosa, a taxa da fotossíntese também aumenta. Todavia, a partir de um certo ponto, novos aumentos na intensidade de iluminação não são acompanhados por elevação na taxa da fotossíntese. A intensidade luminosa deixa de ser um fator limitante da fotossíntese quando todos os sistemas de pigmentos já estiverem sendo excitados e a planta não tem como captar essa quantidade adicional de luz. Atingiu-se o ponto de saturação luminosa. Aumentando-se ainda mais a intensidade de exposição à luz, chega-se a um ponto a partir do qual a atividade fotossintética passa a ser inibida. Trata-se do ponto de inibição da fotossíntese pelo excesso de luz.