











































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
A fisiologia do exercício, explorando os sistemas energéticos que sustentam a atividade muscular, como o sistema atp-cp, a glicólise anaeróbia e o sistema oxidativo. Descreve a relação entre esses sistemas e a intensidade e duração do exercício, além de analisar as adaptações neuromusculares em indivíduos que praticam exercícios. O texto também discute a importância da regulação hormonal e da periodização para o desempenho físico.
Tipologia: Esquemas
1 / 83
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Introdução Considerando as várias reações químicas e elétricas que ocorrem no corpo humano durante as fases do sono, nas diversas formas de exercícios esportivos sistematizados e nas atividades da vida diária, é de extrema importância compreender os mecanismos básicos do organismo para manter seu funcionamento, bem como compreender a harmonia entre os sistemas muscular, fisiológico, respiratório, cardiovascular e endócrino, que atuam de forma integrada. De maneira geral, a fisiologia do exercício consiste no estudo dos músculos envolvidos nos movimentos, dos hormônios liberados, do estado emocional da pessoa, da ativação neuromuscular e de uma série de mecanismos que são ativados no organismo durante a atividade física, em especial, o gasto energético, e como ele é reposto, ou seja, por meio do repouso e da alimentação correta e equilibrada. Assim, surge a necessidade da compreensão sobre como o organismo sintetiza os nutrientes extraídos dos alimentos ingeridos, como esses nutrientes são transformados em energia química utilizável para atuar na síntese-ressíntese de outros substratos durante a contração muscular, e como esse processo pode influenciar as ações dos demais órgãos e tecidos. Por esse motivo, observa-se o avanço tecnológico e científico nos mais variados campos de conhecimento dos esportes, os quais auxiliam os profissionais para obter um melhor aproveitamento nos programas de trabalho, bem como no desempenho esportivo final. Parte desse conhecimento é obtida em áreas como a biomecânica do esporte, a psicologia do esporte, a fisiologia humana, o treinamento
esportivo: a fisiologia do exercício, considerada quanto a seus aspectos e relevância. Para compreender as necessidades energéticas presentes em qualquer modalidade esportiva, principalmente em modalidades diferentes como a natação, o futebol de campo e o atletismo, é preciso delinear o estudo de forma clara, para que esse conteúdo possa contribuir de forma significativa para identificar os benefícios da atividade física, seus efeitos em curto, médio e longo prazo, enfatizar sua ação positiva para a saúde, bem como os malefícios causados pelo sedentarismo.
Homeostase e estado estável
Inicialmente, deve estar claro que o organismo humano se encontra em constante atividade, sendo mantido por funções fisiológicas básicas mesmo quando o indivíduo está em repouso. A condição das funções corporais quando mantidas constantes ou inalteradas, fenômeno que se refere ao estado de equilíbrio dos líquidos e dos tecidos do organismo em relação às suas funções e composições químicas básicas, utilizadas para manter o funcionamento do corpo em perfeito equilíbrio, é denominada homeostase (ROBERGS; ROBERTS, 2002). O conceito de homeostase é utilizado, na biologia, para se referir à habilidade dos seres vivos de regular o seu ambiente interno visando a manter uma condição estável. O processo de autorregulação acontece por meio de múltiplos ajustes de equilíbrio dinâmico, controlados por mecanismos de regulação inter-relacionados. Em linhas gerais, esse é o processo pelo qual se mantém o equilíbrio corporal geral, que pode ser responsável pela redução das consequências fisiológicas do estresse em relação ao exercício ou à velocidade com que a homeostase é atingida logo após o exercício, voltando o corpo às suas funções normais em repouso. Outro fenômeno comum apresentado no organismo, relacionado diretamente ao exercício, é o estado estável (ROBERGS; ROBERTS, 2002). Esse é um comportamento oposto à homeostase, que diz respeito à estabilidade que é provocada em alguns órgãos, músculos e tecidos, e que pode manter o equilíbrio da produção de substratos energéticos e a manutenção da frequência cardíaca para a realização do exercício. Com isso, o estado estável é atingido de acordo com a intensidade e a duração do exercício. Na medida em que se eleva o grau de dificuldade, o organismo se ajusta (PEREIRA; SOUZA JÚNIOR, 2005), demandando maior custo energético.
alguns de seus exemplos. As modalidades acíclicas são aquelas que não têm repetição contínua do movimento, e em que a naturalidade e a espontaneidade dos gestos técnicos são marcantes; esportes de equipe como futebol, voleibol, basquetebol e handebol então entre as modalidades mais populares dessa caracterização. Por sua vez, as modalidades semicíclicas integram simultaneamente atividades repetitivas e espontâneas, o que pode ocorrer durante a prática de várias modalidades, inclusive aquelas mencionadas anteriormente, como a natação. Embora as requisições específicas de cada modalidade, que podem ser adquiridas e treinadas, sejam variáveis, existem componentes funcionais que são comuns para o desenvolvimento do desempenho do aluno: força, resistência, velocidade e coordenação. Nesse sentido, o desempenho dos alunos e o treinamento esportivo são construídos com base nessas diferentes variáveis (força, resistência, velocidade e coordenação) e nos tipos de atividades (cíclicas, acíclicas e semicíclicas) que se inter- relacionam nos diferentes grupos de exercícios (de iniciação, competitivos, preparatórios especiais e preparatórios gerais). Referenciando essas breves classificações do movimento e do esporte, pode-se observar características específicas denominadas valências físicas, e compreender a atuação do metabolismo em cada modalidade em função de suas características e provas. Essas valências físicas são a potência, a velocidade e a resistência aeróbia. Essas valências são associadas aos sistemas energéticos específicos da cadeia de fosfatos de alta energia, à glicólise aeróbia-anaeróbia e ao sistema oxidativo, respectivamente. Esses sistemas serão abordados na sequência deste capítulo. Além das valências físicas e do metabolismo, outro aspecto que está diretamente relacionado às respostas fisiológicas durante o exercício é a diferença entre os meios. Um exemplo prático dessa questão são as diferenças existentes entre os fluidos dos meios aquático e terrestre, que podem oferecer maior ou menor resistência ao corpo em função da densidade, acarretando diferentes efeitos e resultados do metabolismo, assim como das respostas hemodinâmicas, cardíacas e respiratórias entre os indivíduos praticantes de atividades físicas nos meios líquido e terrestre (KILLGORE, 2012). No entanto, mesmo com essa diferença, as características de predominância do metabolismo aeróbio e anaeróbio ocorrem em função das valências físicas, como, por exemplo, o componente força. Com isso, o respectivo substrato proveniente da alta
produção de energia pela via fosfato estará presente em práticas esportivas que envolvem atividades em alta velocidade e de curta duração, como: estímulos curtos de corrida e natação, lançamento de dardo e arremesso de peso, cabeceio ou mesmo a rápida mudança de direção durante um drible no futebol. Nessas modalidades, observa-se que a predominância do metabolismo anaeróbio está intimamente associada ao tempo de realização da atividade. Assim, é preciso considerar que a fisiologia do exercício é o conjunto de transformações que tem início na conversão e na liberação de energia, para a realização das atividades musculares, que resultam na contração muscular e nas mudanças nos mecanismos reguladores dos órgãos e tecidos visando a garantir a manutenção da capacidade vital do organismo humano.
Origem das fontes de energia Todo organismo é capaz de converter os substratos absorvidos nos alimentos em energia utilizável para as ações relacionadas aos movimentos. As fontes de energia dos alimentos ingeridos encontram-se sob a forma de carboidratos, gorduras e proteínas que são armazenadas no organismo em estoques necessários para utilização, renovação e transformação da energia química em energia mecânica, o que permite ao organismo humano executar suas tarefas diárias, em específico os movimentos propriamente ditos. Com isso, assim como os processos do meio ambiente que transformam calor em energia para garantir a sobrevivência e a saúde das plantas, o organismo humano também necessita de calor para a produção de energia, fundamental à sua existência. Como a energia é dissipada em forma de calor, a quantidade de energia produzida é o resultado de um conjunto de reações biológicas mensurado em quilocalorias (kcal ou calorias); entende-se que uma quilocaloria (1kcal) corresponde à quantidade de energia térmica (calor) necessária para aumentar a temperatura de um quilograma (1kg) ou um litro (1l ou 1 l ) de água em um grau Celsius (1ºC). Assim, a oxidação de um grama de gordura é responsável pela produção de 9kcal de energia, enquanto a mesma quantidade de carboidratos e proteínas é responsável pela produção de aproximadamente 4,1kcal de energia, como demonstrado na Figura 1 a seguir (WILMORE; COSTILL, 2001; HARGREAVES, 2003). Por meio dessa reação, é liberada energia utilizável para os movimentos e também energia livre. A energia livre é utilizada para o crescimento e para a reparação do organismo, sendo esses os
exercícios de intensidade baixa e moderada, em circunstâncias de estresse causado por mudanças climáticas, especificamente em condições de tempo frio e de exercício prolongado, capazes de exaurir as reservas corporais de glicogênio (McARDLE et al., 2011). As proteínas são os nutrientes que fornecem menos substrato para se converter em energia utilizável: são responsáveis por apenas de 5% a 10% da energia utilizável para manter os exercícios por um tempo prolongado, sendo utilizada apenas sua unidade mais básica, os aminoácidos. Para que isso ocorra, é necessário que as proteínas sejam convertidas em glicose, e somente em condições severas e de depleção dos demais substratos (ARAÚJO; MENÓIA, 2008; CHAMPE, HARVEY; FERRIER, 2006). As quantidades de glicogênio (muscular e hepático) estocado no organismo são apresentadas na Tabela 1, abaixo, e podem ser utilizadas como valores referenciais. Tabela 1. Estoques de glicogênio, glicose e gordura corporal
Obs.: Estimativas realizadas com base em um peso corporal médio de 65kg, com 12% de gordura corporal. Fonte: Adaptado de WILMORE e COSTILL, 2001, p.
Apesar de os alimentos fornecerem energia na forma de substratos constituídos por elementos químicos que atuam na produção de energia para a realização dos
movimentos, seu fornecimento não ocorre diretamente para a atuação nos processos celulares: eles são convertidos em um composto altamente energético, conhecido como adenosina trifosfato (ATP) (McARDLE; KATCH; KATCH, 2011; WILMORE; COSTILL, 2001; POWERS; HOWLEY, 2009; ROBERGS; ROBERTS, 2002; ASTRAND et al., 2006; ROSSI; TIRAPEGUI, 1999; PEREIRA; SOUZA JUNIOR, 2004). O ATP é produzido a partir das moléculas de glicose, bem como do glicogênio muscular e hepático que foi estocado durante a síntese dos alimentos. A seguir, serão analisadas a síntese, a ressíntese e suas utilizações nos respectivos metabolismos para a realização de atividades relacionadas à contração muscular.
Produção de energia pela atividade celular Com dito acima, a adenosina trifosfato, popularmente conhecida como ATP, é uma molécula de alta energia produzida pelo organismo, presente em todas as células, que consiste em uma molécula de adenosina (adenina) unida a uma molécula de nucleosídeo (ribose) e a três radicais fosfato (composto de fósforo unidos a oxigênios), conectados em cadeia, onde a energia é armazenada nas ligações entre os fosfatos (McARDLE; KATCH; KATCH, 2011; WILMORE;COSTILL, 2001; POWERS;HOWLEY, 2009; ROBERGS;ROBERTS, 2002; PEREIRA; SOUZA JUNIOR, 2004), como apresentado na Figura 2a. A quebra de uma molécula do grupo fosfato libera uma grande quantidade de energia, aproximadamente entre 7,3 e 7,6kcal/mol de ATP, reduzindo o ATP a uma molécula de adenosina difosfato (ADP) e uma molécula de fosfato inorgânico (Pi), conforme a Figura 2b. Figura 2a. Componentes da molécula de ATP
Fonte: Adaptado de WILMORE e COSTILL, 2001, p.119. A fim de facilitar a compreensão da verdadeira função do ATP, pode-se fazer uma analogia com o funcionamento de uma bateria recarregável, uma vez que essa substância pode acumular a energia liberada por compostos de nível energético mais elevado e, posteriormente, cedê-la para formar compostos de menor nível energético. Esses fenômenos são conhecidos, respectivamente, como reações endergônicas e reações exergônicas. Essas reações produzem um mecanismo sensível de manutenção e de regulação do metabolismo energético que, por sua vez, estimula imediatamente a decomposição dos nutrientes armazenados para fornecer energia para a ressíntese de ATP (anabolismo), aumentando, assim, a velocidade do metabolismo energético nos estágios iniciais dos exercícios de alto desempenho ou apenas para suprir as demandas das atividades da vida diária, em esforços de mais longa duração e de baixa intensidade (SILVA; BRACHT, 2001). Esse ciclo ATP-ADP é a forma fundamental de troca de energia em sistemas biológicos. Nos músculos ativos, essa energia ativa liberada pela quebra da ATP em ADP, sobre os elementos contráteis (miosina ou actina), induz o ciclo alongamento- encurtamento das fibras musculares (ZATSIORSKY, 1999), que é responsável pela potência muscular em atividades que requerem contração extremamente rápida. Essa
característica é passível de observação em atividades como os saltos no atletismo, a saída e as viradas na natação, e o chute a gol no futebol. Porém, ressalta-se que, tanto na síntese como na ressíntese, é necessário que ocorra a liberação de energia para que tais ações sejam mantidas em funcionamento. O fluxo dessas ações é contínuo e simultâneo, e sempre produz energia livre, como demonstrado nas Figuras 4 e 5, a seguir. Nessas figuras, vê-se que a própria ressíntese de ADP em ATP ocorre por meio do substrato fosfocreatina (PCr) e da enzima creatina quinase (CK) (CHAMPE; HARVEY; FERRIER, 2006; PEREIRA; SOUZA JUNIOR, 2004), utilizando-se energia livre para a síntese de uma nova molécula de ATP. Quando ocorre de quantidades extras de ATP estarem disponíveis nas células, grande parte da sua energia é utilizada para sintetizar PCr, formando com isso um reservatório de energia. Desse modo, quando o ATP passa a ser utilizado na contração muscular, a energia da PCr é transferida rapidamente de volta à ATP, e daí para os sistemas funcionais das células. Essa relação reversível entre o ATP e a PCr é representada na Figura 5. Figura 4. Ressíntese de ADP em ATP pela creatina-fosfato (PCr) e pela creatina quinase (CK)
Fonte: Adaptado de WILMORE e COSTILL, 2001, p. 121. Figura 5. Ressíntese de ATP pela reação de via de mão dupla da creatina-fosfato (PCr) CK PCr + ADP + Pi ATP + C + Pi Onde: PCr = fosfocreatina ou creatina-fosfato CK = creatina quinase ADP = adenosina difosfato ATP = adenosina trifosfato Pi = fosfato inorgânico C = creatina Considerando que a PCr não pode atuar da mesma forma que o ATP, como elemento de ligação na transferência de energia dos alimentos para os sistemas funcionais das células na manutenção da capacidade vital e do exercício, esse substrato
(O 2 ). Por outro lado, a produção de energia pelo ciclo de Krebs ou sistema oxidativo ocorre no nível mitocondrial, sendo possível a produção de ATP mediante a utilização de oxigênio, razão pela qual tal sistema se denomina aeróbio. Desse modo, o sucesso e a operacionalidade de cada um dos grupos das atividades em questão dependem predominantemente do funcionamento do sistema energético utilizado, razão pela qual serão detalhadas as características de cada um desses sistemas, bem como sua predominância metabólica. A principal função dos referidos sistemas energéticos é precisamente ressintetizar e reutilizar ATP para a contração muscular, uma vez que o sistema musculoesquelético é incapaz de utilizar diretamente a energia produzida pela degradação dos grandes compostos energéticos provenientes da alimentação, como a glicose, os ácidos graxos ou mesmo os aminoácidos. Por isso, todas as outras moléculas energéticas devem de ser previamente convertidas em ATP de modo a disponibilizar essa energia para a contração muscular. Isso não se deve ao fato de existir somente um tipo de enzima nas pontes cruzadas de miosina; nesse caso, faz-se referência à enzima ATPase. Essas reações podem ser observadas nos sistemas de energia, como explicado em seguida.
Metabolismo anaeróbio alático: sistema ATP-CP (fosfagênio)
Dos sistemas mencionados, o sistema energético do fosfagênio, juntamente com a molécula de ADP, resulta diretamente na produção de ATP. O sistema fosfagênio representa a fonte de ATP de disponibilidade mais rápida para ser usada pelo músculo como fonte de energia. A associação da creatina a ele, ou seja, o sistema ATP-CP, creatina-fosfato, fornece essa reserva de energia para a mais rápida e eficiente regeneração do ATP, se comportando como importante reservatório de energia utilizado na prática de exercícios de curta duração e alta intensidade (JONES et al., 2007). A quantidade de ATP disponibilizada pelo sistema fosfagênio equivale entre 5,7 e 6,9kcal, o que não representa muita energia disponível para o exercício. Atividades que exigem altos índices de energia durante um breve período de tempo dependem basicamente da produção de ATP a partir das reações enzimáticas desse sistema e, por isso, ele é utilizado na produção de ATP em exercícios de alta intensidade e de curta duração. Os sistemas ATP e PCr podem proporcionar uma potência muscular máxima
por um período aproximado de 8 a 10 segundos, o que é suficiente para um chute a gol, um lançamento longo, uma cobrança de falta ou lateral no futebol; uma corrida de 100m, um arremesso de peso ou martelo, um lançamento de dardo ou disco no atletismo; ou um golpe de judô, este último utilizando-se predominantemente da capacidade física chamada força explosiva ou força explosiva máxima. O ATP necessário para a contração dos músculos nessas atividades estará tão prontamente disponível porque esse processo de produção de energia requer poucas reações químicas, e não requer, teoricamente, a presença de moléculas de oxigênio (O 2 ), estando o ATP e a PCr armazenados e disponíveis nos músculos para tal finalidade. A PCr apresenta uma cadeia de fosfato de alta energia, metabólito que libera grande quantidade de energia livre durante a sua desfosforilação e, como o ATP, decompõe-se na presença da enzima creatina quinase (CK), processo em que a energia é liberada para formar outra molécula de ATP a partir da molécula de ADP, atuando diretamente no sistema muscular contrátil. Com isso, as ligações de alta energia da PCr liberam consideravelmente mais energia se comparadas às moléculas de ATP, aproximadamente de 11 a 13kcal/mol em músculos ativos. As fibras musculares de contração rápida (tipo II), armazenam de 4 a 6 vezes mais fosfocreatina (PCr) do que ATP. Nesse sentido, no processo de contração muscular, a PCr tem o papel de servir como um “reservatório energético” das células musculares para oferecer energia rápida, resultante da quebra das ligações fosfatos para ressíntese do ATP (BEZERRA, 2011). O aumento das concentrações de PCr via suplementação ergogênica, especificamente com a creatina, pode elevar de 10% a 40% o valor total das reservas energéticas (VOLEK et al., 1996). Nesse contexto, a suplementação de creatina, sempre com orientação de um especialista da área médica, pode evitar a fadiga por aumentar a disponibilidade de fosfato creatina, aumentando também a ressíntese de creatina-fosfato e reduzindo a acidose muscular. O sistema ATP-CP pode ser considerado um sistema-tampão de ATP, entendendo-se aqui o “tampão” como a mistura de um ácido com a sua base conjugada (salina) que, quando presente em uma solução, reduz qualquer alteração de pH que poderia ocorrer na solução quando se adiciona a ela um ácido ou um composto alcalino (IDE; LOPES; SARRAIPA, 2010; CHAMPE; HARVEY; FERRIER, 2006). Esse ponto será retomado na descrição dos processos de conversão do metabolismo
Metabolismo anaeróbio lático: sistema glicolítico
O processo de glicólise anaeróbia envolve a degradação incompleta de uma das substâncias alimentares mais presentes nesse processo, que são os carboidratos, com a sua transformação em compostos de açúcares simples – monossacarídeos, nesse caso, a glicose – , capazes de atuar na ressíntese de ATP, produzindo energia livre para a realização da contração muscular e, consequentemente, os movimentos. A glicose representa aproximadamente 99% de todos os açúcares circulantes no sangue, sendo originária da digestão e da síntese dos carboidratos, que também podem ser convertidos na forma de moléculas de glicogênio e armazenados no fígado e nos músculos. O glicogênio armazenado no fígado é sintetizado a partir da glicose, por meio de um processo denominado glicogênese, sendo que o catabolismo desse glicogênio para a utilização na via anaeróbia é denominado de glicogenólise. A glicogenólise necessita de três enzimas (fosforilase, enzima desramificante e fosfoglicomutase) para a realização de sua função, sendo a principal delas a fosforilase, responsável pela liberação da glicose a partir do glicogênio. O processo de glicólise anaeróbia é mais complexo do que a formação de ATP do sistema do fosfagênio; ele é composto por 12 reações enzimáticas que contribuem para a formação do ácido lático e posteriormente, para a produção do subproduto conhecido como lactato, contribuindo ainda para a formação do ácido pirúvico, que, associado a uma molécula de coenzima-A (Co-A), terá atuação no sistema aeróbio (McARDLE; KATCH;KATCH, 2011; POWERS;HOWLEY, 2009). A glicólise anaeróbia representa também um dos principais fornecedores de ATP durante atividades de alta intensidade e de curta duração, como corridas de 400 e 800 metros, e provas de 50 e 100 metros na natação. Essas atividades dependem maciçamente do sistema do fosfagênio e da glicólise anaeróbia, e são denominadas atividades anaeróbias. Na glicólise aeróbia, o piruvato adentra a mitocôndria por meio dos transportadores monocarboxílicos (MCT), ao passo que, na glicólise anaeróbia, o piruvato é convertido em ácido lático pela ação da enzima lactato desidrogenase (LDH). Na realidade, esse sistema pode ser extremamente eficaz, porque os músculos apresentam uma alta capacidade de degradar rapidamente a glicose e de produzir grandes quantidades de ATP durante curtos períodos de tempo. As dez reações que
ocorrem no interior do citoplasma celular e que compõem o processo da glicólise anaeróbia estão descritas na Figura 7, a seguir. Figura 7. Esquema representativo da glicólise
Fonte: Adaptado de McARDLE, KATCH e KATCH, 2011, p. 150; e de WILMORE e COSTILL, 2001, p. 122. Conforme a Figura 7, relacionam-se a seguir as enzimas que participam das reações de quebra das moléculas para a formação de ATP livre a ser utilizado durante os exercícios (seguem a ordem numérica referenciada na figura acima): a) hexoquinase; b) glicose-fosfato isomerase; c) fosfofrutoquinase; d) aldolase; e) triosefosfato isomerase;