

Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Elaboração de um Relatório Estatístico
Tipologia: Exercícios
1 / 2
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Turno Tempo (min) Tempo (min) 1 32 2 34 Média 30, 3 28 Erro padrão 1, 4 25 Mediana 31 5 23 Modo 32 6 36 Desvio padrão 6, 7 32 Variância da amostra 48, 8 41 Curtose -0, 9 26 Assimetria 0, 10 33 Intervalo 23 11 31 Mínimo 20 12 20 Máximo 43 13 32 Soma 817 14 32 Contagem 27 15 21 Nível de confiança(95,0%) 2, 16 39 17 21 33, 18 29 19 39 20 43 Tempo (min) 21 21 22 26 Média 30, 23 28 Erro padrão 1, 24 27 Mediana 31 25 37 Modo 32 26 41 Desvio padrão 6, 27 20 Variância da amostra 48, Curtose -0, Assimetria 0, Intervalo 23 Mínimo 20 Máximo 43 Soma 817 Contagem 27 Nível de confiança(90,0%) 2, a) 27,9695 <=μ<= 32,
b) 27,49975 <=μ<= 33, O intervalo contém o valor de 33 minutos. Logo, temos que aceitar a possibilidade de que o tempo médio da população seja de 33 minutos, não havendo evidências estatísticas que permitam assegurar, com um NC de 95%, que um novo turno deva ser implantado.
IC de 95%
Uma empresa necessita avaliar o tempo médio necessário para a troca de operação de uma linha de montagem. O respectivo tempo de troca é calculado iniciando-se no momento em que a última peça com o ajuste anterior sai da linha e o momento em que a mesma linha, após os ajustes necessários, inicia a produção do novo produto. O gerente efetuou uma amostra de 27 turnos, cujos resultados expressos em minutos se encontram abaixo.
a) determine o intervalo de confiança do tempo médio com um nível de confiança de 90%. b) Caso possa se considerar, com um nível de confiança de 95%, que o tempo médio é de 33 minutos, a empresa não implantará um novo turno, não efetuando a ampliação de sua capacidade. Com base nessa análise, você indicaria a implantação de um novo turno?
CUIDADO!! Neste caso, como o tamanho da amostra não é maior que 30, teríamos que obter uma informação adicional da distribuição da população para usar a técnica: A) ou a distribuição da população teria que ser considerada aproximadamente simétrica; b) ou a distribuição da população teria que ser considerada normal.
Carrro Consumo Consumo 1 14, 2 19,60 Média 15, 3 15,10 Erro padrão 0, 4 15,50 Mediana 15, 5 14,40 Modo 14, 6 14,70 Desvio padrão 1, 7 14,80 Variância da amostra 2, 8 14,60 Curtose 5, 9 15,30 Assimetria 0, 10 15,20 Intervalo 8, 11 14,50 Mínimo 11, 12 16,10 Máximo 19, 13 15,20 Soma 242, 14 11,10 Contagem 16 15 16,00 Nível de confiança(99,0%) 1, 16 15,
a) n= 16, μamostra= 15, samostra= 1, mínimo= 11, máximo= 19, mediana= 15,
b) não temos o desvio padrão da população, logo, utilizaremos a distribuição t
α/2= (^) 0,005 0,
15,
0,41 erro padrão calculado^ 0,
2,
1,
IC= 15,15-1,20<=μ<=15,15+1,20 ou 13,95 <=μ<= 16,
c)
O interesse de uma revista especializada em carros é estimar a média de consumo, em quilômetros por litro, de um novo modelo de carro da motadora líder do mercado de carros populares. Uma amostra aleatória de 16 carros do novo modelo apresentou os números abaixo.
a) apresentar as estatísticas descritivas da amostra; b) estimar a média da população com um intervalo de confiança de 99%, considerando que a população tem distribuição normal; c) supondo que a fábrica anuncie que o consumo médio é de 16 Km/litro , qual a opinião da revista sobre a veracidade da afirmação?
/ 2, n 1 / 2, n 1
s n =
Embora esteja próximo ao limite superior do intervalo de confiança, a revista deve concordar com a montadora com um nível de confiança de 99%. A técnica do intervalo de confiança pressupõe que qualquer ponto dentro do intervalo satisfaz a condição.
Lembrete: Ferramentas-> -> Análise de Dados -> Estatística Descritiva
erro padrão obtido na tabela acima, da estatística descritiva
Não tenho culpa! A função INVT exige que informemos o valor de α!
como? INVT(0,01;15)