Baixe Biblia-dos-projetistas (1) e outras Manuais, Projetos, Pesquisas em PDF para Bioquímica e Instrumentação, somente na Docsity!
Lessons In Industrial Instrumentation
© c 2008-2015 by Tony R. Kuphaldt
Version 2.09 (development) – Last update February 25, 2015
i
Lessons In Industrial Instrumentation ©c 2008-2015 by Tony R. Kuphaldt
This book is a copyrighted work, but licensed under the Creative Commons Attribution 3.0 United States License. To view a copy of this license, turn to Appendix F, or visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public.
Revision history^1
- Version 0.1 – July 2008 to September 2008 (initial development)
- Version 0.2 – released September 29, 2008 for Fall quarter student use (SafeCreative registration code 0810111072182 )
- Version 0.4 – released January 12, 2009 for Winter quarter student use (SafeCreative registration code 0901122394919 )
- Version 0.6 – released April 21, 2009 for public use (SafeCreative registration code 0904213106101 )
- Version 0.8 – released September 8, 2009 for public use (SafeCreative registration code 0909094400980 )
- Version 1.0 – released September 28, 2009 for public use (SafeCreative registration code 0909284601913 )
- Version 1.2 – released January 12, 2010 for public use (SafeCreative registration code 1001125303242 )
- Version 1.4 – released April 11, 2010 for public use (SafeCreative registration code 1004125976416 )
- Version 1.6 – released May 4, 2010 for public use (SafeCreative registration code 1005046194859 )
- Version 1.8 – released June 1, 2010 for public use (SafeCreative registration code 1006016477958 )
- Version 1.10 – released June 28, 2010 for public use (SafeCreative registration code 1006286691573 )
- Version 1.12 – released September 20, 2010 for public use (SafeCreative registration code 1009217397803 ) (^1) Version numbers ending in odd digits are developmental (e.g. 0.7, 1.23, 4.5), with only the latest revision made accessible to the public. Version numbers ending in even digits (e.g. 0.6, 1.0, 2.14) are considered “public-release” and will be archived. Version numbers beginning with zero (e.g. 0.1, 0.2, etc.) represent incomplete editions or in-progress revisions.
Contents
- Preface
- 1 Calculus
- 1.1 Introduction to calculus
- 1.2 The concept of differentiation
- 1.3 The concept of integration
- 1.4 How derivatives and integrals relate to one another
- 1.5 Symbolic versus numerical calculus
- 1.6 Numerical differentiation
- 1.7 Numerical integration
- 2 Physics
- 2.1 Terms and Definitions
- 2.2 Metric prefixes
- 2.3 Areas and volumes
- 2.3.1 Common geometric shapes
- 2.4 Unit conversions and physical constants
- 2.4.1 Unity fractions
- 2.4.2 Conversion formulae for temperature
- 2.4.3 Conversion factors for distance
- 2.4.4 Conversion factors for volume
- 2.4.5 Conversion factors for velocity
- 2.4.6 Conversion factors for mass
- 2.4.7 Conversion factors for force
- 2.4.8 Conversion factors for area
- 2.4.9 Conversion factors for pressure (either all gauge or all absolute)
- 2.4.10 Conversion factors for pressure (absolute pressure units only)
- 2.4.11 Conversion factors for energy or work
- 2.4.12 Conversion factors for power
- 2.4.13 Terrestrial constants
- 2.4.14 Properties of water
- 2.4.15 Miscellaneous physical constants
- 2.4.16 Weight densities of common materials
- 2.5 Dimensional analysis
- 2.6 The International System of Units iv CONTENTS
- 2.7 Conservation Laws
- 2.8 Classical mechanics
- 2.8.1 Newton’s Laws of Motion
- 2.8.2 Work, energy, and power
- 2.8.3 Mechanical springs
- 2.8.4 Rotational motion
- 2.9 Simple machines
- 2.9.1 Levers
- 2.9.2 Pulleys
- 2.9.3 Inclined planes
- 2.9.4 Gears
- 2.9.5 Belt drives
- 2.9.6 Chain drives
- 2.10 Elementary thermodynamics
- 2.10.1 Heat versus Temperature
- 2.10.2 Temperature
- 2.10.3 Heat
- 2.10.4 Heat transfer
- 2.10.5 Specific heat and enthalpy
- 2.10.6 Phase changes
- 2.10.7 Phase diagrams and critical points
- 2.10.8 Thermodynamic degrees of freedom
- 2.10.9 Applications of phase changes
- 2.11 Fluid mechanics
- 2.11.1 Pressure
- 2.11.2 Pascal’s Principle and hydrostatic pressure
- 2.11.3 Fluid density expressions
- 2.11.4 Manometers
- 2.11.5 Systems of pressure measurement
- 2.11.6 Negative pressure
- 2.11.7 Buoyancy
- 2.11.8 Gas Laws
- 2.11.9 Fluid viscosity
- 2.11.10 Reynolds number
- 2.11.11 Law of Continuity
- 2.11.12 Viscous flow
- 2.11.13 Bernoulli’s equation
- 2.11.14 Torricelli’s equation
- 2.11.15 Flow through a venturi tube
- 3 Chemistry
- 3.1 Terms and Definitions
- 3.2 Atomic theory and chemical symbols
- 3.3 Periodic table of the elements
- 3.4 Electronic structure
- 3.5 Spectroscopy CONTENTS v
- 3.5.1 Emission spectroscopy
- 3.5.2 Absorption spectroscopy
- 3.6 Formulae for common chemical compounds
- 3.7 Molecular quantities
- 3.8 Stoichiometry
- 3.8.1 Balancing chemical equations by trial-and-error
- 3.8.2 Balancing chemical equations using algebra
- 3.8.3 Stoichiometric ratios
- 3.9 Energy in chemical reactions
- 3.9.1 Heats of reaction and activation energy
- 3.9.2 Heats of formation and Hess’s Law
- 3.10 Periodic table of the ions
- 3.11 Ions in liquid solutions
- 3.12 pH
- 4 DC electricity
- 4.1 Electrical voltage
- 4.2 Electrical current
- 4.2.1 Electron versus conventional flow
- 4.3 Electrical sources and loads
- 4.4 Electrical power
- 4.5 Electrical resistance and Ohm’s Law
- 4.6 Series versus parallel circuits
- 4.7 Kirchhoff’s Laws
- 4.8 Circuit fault analysis
- 4.9 Bridge circuits
- 4.9.1 Component measurement
- 4.9.2 Sensor signal conditioning
- 4.10 Null-balance voltage measurement
- 4.11 Electromagnetism
- 4.12 Capacitors
- 4.13 Inductors
- 5 AC electricity
- 5.1 RMS quantities
- 5.2 Resistance, Reactance, and Impedance
- 5.3 Series and parallel circuits
- 5.4 Transformers
- 5.4.1 Basic principles
- 5.4.2 Loading effects
- 5.4.3 Step ratios
- 5.5 Phasors
- 5.5.1 Circles, sine waves, and cosine waves
- 5.5.2 Phasor expressions of phase shifts
- 5.5.3 Phasor expressions of impedance
- 5.5.4 Phasor arithmetic vi CONTENTS
- 5.5.5 Phasors and circuit measurements
- 5.6 The s variable
- 5.6.1 Meaning of the s variable
- 5.6.2 Impedance expressed using the s variable
- 5.7 Transfer function analysis
- 5.7.1 Example: LR low-pass filter circuit
- 5.7.2 Example: RC high-pass filter circuit
- 5.7.3 Example: LC “tank” circuit
- 5.7.4 Example: RLC band-pass filter circuit
- 5.7.5 Summary of transfer function analysis
- 5.8 Polyphase AC power
- 5.8.1 Delta and Wye configurations
- 5.8.2 Power in three-phase circuits
- 5.8.3 Grounded three-phase circuits
- 5.8.4 Symmetrical components
- 5.9 Phasor analysis of transformer circuits
- 5.9.1 Phasors in single-phase transformer circuits
- 5.9.2 Phasors in three-phase transformer circuits
- 5.10 Transmission lines
- 5.10.1 Open-ended transmission lines
- 5.10.2 Shorted transmission lines
- 5.10.3 Properly terminated transmission lines
- 5.10.4 Discontinuities
- 5.10.5 Velocity factor
- 5.10.6 Cable losses
- 5.11 Antennas
- 5.11.1 Maxwell and Hertz
- 5.11.2 Antenna size
- 5.11.3 Antenna orientation and directionality
- 6 Introduction to industrial instrumentation
- 6.1 Example: boiler water level control system
- 6.2 Example: wastewater disinfection
- 6.3 Example: chemical reactor temperature control
- 6.4 Other types of instruments
- 6.4.1 Indicators
- 6.4.2 Recorders
- 6.4.3 Process switches and alarms
- 6.5 Summary
- 6.6 Review of fundamental principles
- 7 Instrumentation documents CONTENTS vii
- 7.1 Process Flow Diagrams
- 7.2 Process and Instrument Diagrams
- 7.3 Loop diagrams
- 7.4 Functional diagrams
- 7.5 Instrument and process equipment symbols
- 7.5.1 Line types
- 7.5.2 Process/Instrument line connections
- 7.5.3 Instrument bubbles
- 7.5.4 Process valve types
- 7.5.5 Valve actuator types
- 7.5.6 Valve failure mode
- 7.5.7 Liquid level measurement devices
- 7.5.8 Flow measurement devices (flowing left-to-right)
- 7.5.9 Process equipment
- 7.5.10 Functional diagram symbols
- 7.5.11 Single-line electrical diagram symbols
- 7.5.12 Fluid power diagram symbols
- 7.6 Instrument identification tags
- 8 Instrument connections
- 8.1 Pipe and pipe fittings
- 8.1.1 Flanged pipe fittings
- 8.1.2 Tapered thread pipe fittings
- 8.1.3 Parallel thread pipe fittings
- 8.1.4 Sanitary pipe fittings
- 8.2 Tube and tube fittings
- 8.2.1 Compression tube fittings
- 8.2.2 Common tube fitting types and names
- 8.2.3 Bending instrument tubing
- 8.2.4 Special tubing tools
- 8.3 Electrical signal and control wiring
- 8.3.1 Connections and wire terminations
- 8.3.2 DIN rail
- 8.3.3 Cable routing
- 8.3.4 Signal coupling and cable separation
- 8.3.5 Electric field (capacitive) de-coupling
- 8.3.6 Magnetic field (inductive) de-coupling
- 8.3.7 High-frequency signal cables
- 8.4 Review of fundamental principles
- 9 Discrete process measurement
- 9.1 “Normal” status of a switch
- 9.2 Hand switches
- 9.3 Limit switches
- 9.4 Proximity switches
- 9.5 Pressure switches viii CONTENTS
- 9.6 Level switches
- 9.6.1 Float-type level switches
- 9.6.2 Tuning fork level switches
- 9.6.3 Paddle-wheel level switches
- 9.6.4 Ultrasonic level switches
- 9.6.5 Capacitive level switches
- 9.6.6 Conductive level switches
- 9.7 Temperature switches
- 9.8 Flow switches
- 9.9 Review of fundamental principles
- 10 Discrete control elements
- 10.1 On/off valves
- 10.2 Fluid power systems
- 10.3 Solenoid valves
- 10.3.1 2-way solenoid valves
- 10.3.2 3-way solenoid valves
- 10.3.3 4-way solenoid valves
- 10.3.4 Normal energization states
- 10.4 On/off electric motor control circuits
- 10.4.1 AC induction motors
- 10.4.2 Motor contactors
- 10.4.3 Motor protection
- 10.4.4 Motor control circuit wiring
- 10.5 Review of fundamental principles
- 11 Relay control systems
- 11.1 Control relays
- 11.2 Relay circuits
- 11.3 Review of fundamental principles
- 12 Programmable Logic Controllers
- 12.1 PLC examples
- 12.2 Input/Output (I/O) capabilities
- 12.2.1 Discrete I/O
- 12.2.2 Analog I/O
- 12.2.3 Network I/O
- 12.3 Logic programming
- 12.3.1 Relating I/O status to virtual elements
- 12.3.2 Memory maps and I/O addressing
- 12.4 Ladder Diagram (LD) programming
- 12.4.1 Contacts and coils
- 12.4.2 Counters
- 12.4.3 Timers
- 12.4.4 Data comparison instructions
- 12.4.5 Math instructions CONTENTS ix
- 12.4.6 Sequencers
- 12.5 Structured Text (ST) programming
- 12.6 Instruction List (IL) programming
- 12.7 Function Block Diagram (FBD) programming
- 12.8 Sequential Function Chart (SFC) programming
- 12.9 Human-Machine Interfaces
- 12.10How to teach yourself PLC programming
- 12.11Review of fundamental principles
- 13 Analog electronic instrumentation
- 13.1 4 to 20 mA analog current signals
- 13.2 Relating 4 to 20 mA signals to instrument variables
- 13.2.1 Example calculation: controller output to valve
- 13.2.2 Example calculation: flow transmitter
- 13.2.3 Example calculation: temperature transmitter
- 13.2.4 Example calculation: pH transmitter
- 13.2.5 Example calculation: reverse-acting I/P transducer signal
- 13.2.6 Example calculation: PLC analog input scaling
- 13.2.7 Graphical interpretation of signal ranges
- 13.2.8 Thinking in terms of per unit quantities
- 13.3 Controller output current loops
- 13.4 4-wire (“self-powered”) transmitter current loops
- 13.5 2-wire (“loop-powered”) transmitter current loops
- 13.6 4-wire “passive” versus “active” output transmitters
- 13.7 Troubleshooting current loops
- 13.7.1 Using a standard milliammeter to measure loop current
- 13.7.2 Using a clamp-on milliammeter to measure loop current
- 13.7.3 Using “test” diodes to measure loop current
- 13.7.4 Using shunt resistors to measure loop current
- 13.7.5 Troubleshooting current loops with voltage measurements
- 13.7.6 Using loop calibrators
- 13.7.7 NAMUR signal levels
- 13.8 Review of fundamental principles
- 14 Pneumatic instrumentation
- 14.1 Pneumatic sensing elements
- 14.2 Self-balancing pneumatic instrument principles
- 14.3 Pilot valves and pneumatic amplifying relays
- 14.4 Analogy to opamp circuits
- 14.5 Analysis of practical pneumatic instruments
- 14.5.1 Foxboro model 13A differential pressure transmitter
- 14.5.2 Foxboro model E69 “I/P” electro-pneumatic transducer
- 14.5.3 Fisher model 546 “I/P” electro-pneumatic transducer
- 14.5.4 Fisher-Rosemount model 846 “I/P” electro-pneumatic transducer
- 14.6 Proper care and feeding of pneumatic instruments
- 14.7 Advantages and disadvantages of pneumatic instruments x CONTENTS
- 14.8 Review of fundamental principles
- 15 Digital data acquisition and networks
- 15.1 Digital representation of numerical data
- 15.1.1 Integer number formats
- 15.1.2 Fixed-point number formats
- 15.1.3 Floating-point number formats
- 15.1.4 Example of industrial number formats
- 15.2 Digital representation of text
- 15.2.1 Morse and Baudot codes
- 15.2.2 EBCDIC and ASCII
- 15.2.3 Unicode
- 15.3 Analog-digital conversion
- 15.3.1 Converter resolution
- 15.3.2 Converter sampling rate
- 15.4 Analog signal conditioning and referencing
- 15.4.1 Instrumentation amplifiers
- 15.4.2 Analog input references and connections
- 15.5 Digital data communication theory
- 15.5.1 Serial communication principles
- 15.5.2 Physical encoding of bits
- 15.5.3 Communication speed
- 15.5.4 Data frames
- 15.5.5 Channel arbitration
- 15.5.6 The OSI Reference Model
- 15.6 EIA/TIA-232, 422, and 485 networks
- 15.6.1 EIA/TIA-232
- 15.6.2 EIA/TIA-422 and EIA/TIA-485
- 15.7 Ethernet networks
- 15.7.1 Repeaters (hubs)
- 15.7.2 Ethernet cabling
- 15.7.3 Switching hubs
- 15.8 Internet Protocol (IP)
- 15.8.1 IP addresses
- 15.8.2 Subnetworks and subnet masks
- 15.8.3 Routing tables
- 15.8.4 IP version
- 15.8.5 DNS
- 15.8.6 Command-line diagnostic utilities
- 15.9 Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
- 15.10The HART digital/analog hybrid standard
- 15.10.1 Basic concept of HART
- 15.10.2 HART physical layer
- 15.10.3 HART multidrop mode
- 15.10.4 HART multi-variable transmitters and burst mode
- 15.11Modbus CONTENTS xi
- 15.11.1 Modbus data frames
- 15.11.2 Modbus function codes and addresses
- 15.11.3 Modbus function command formats
- 15.12Review of fundamental principles
- 16 FOUNDATION Fieldbus instrumentation
- 16.1 FF design philosophy
- 16.2 H1 FF Physical layer
- 16.2.1 Segment topology
- 16.2.2 Coupling devices
- 16.2.3 Electrical parameters
- 16.2.4 Cable types
- 16.2.5 Segment design
- 16.3 H1 FF Data Link layer
- 16.3.1 Device addressing
- 16.3.2 Communication management
- 16.3.3 Device capability
- 16.4 FF function blocks
- 16.4.1 Analog function blocks versus digital function blocks
- 16.4.2 Function block location
- 16.4.3 Standard function blocks
- 16.4.4 Device-specific function blocks
- 16.4.5 FF signal status
- 16.4.6 Function block modes
- 16.5 H1 FF device configuration and commissioning
- 16.5.1 Configuration files
- 16.5.2 Device commissioning
- 16.5.3 Calibration and ranging
- 16.6 H1 FF segment troubleshooting
- 16.6.1 Cable resistance
- 16.6.2 Signal strength
- 16.6.3 Electrical noise
- 16.6.4 Using an oscilloscope on H1 segments
- 16.6.5 Message re-transmissions
- 16.7 Review of fundamental principles
- 17 Wireless instrumentation
- 17.1 Radio systems
- 17.1.1 Decibels
- 17.1.2 Antenna radiation patterns
- 17.1.3 Antenna gain calculations
- 17.1.4 Effective radiated power
- 17.1.5 RF link budget
- 17.1.6 Fresnel zones
- 17.2 WirelessHART
- 17.2.1 Introduction to WirelessHART xii CONTENTS
- 17.2.2 WirelessHART network protocol
- 17.2.3 WirelessHART network gateway device
- 17.2.4 WirelessHART device commissioning and configuration
- 17.3 Review of fundamental principles
- 18 Instrument calibration
- 18.1 Calibration versus re-ranging
- 18.2 Zero and span adjustments (analog instruments)
- 18.3 Calibration errors and testing
- 18.3.1 Typical calibration errors
- 18.3.2 As-found and as-left documentation
- 18.3.3 Up-tests and Down-tests
- 18.3.4 Automated calibration
- 18.4 Damping adjustments
- 18.5 LRV and URV settings, digital trim (digital transmitters)
- 18.6 An analogy for calibration versus ranging
- 18.7 Calibration procedures
- 18.7.1 Linear instruments
- 18.7.2 Nonlinear instruments
- 18.7.3 Discrete instruments
- 18.8 Instrument turndown
- 18.9 NIST traceability
- 18.10Practical calibration standards
- 18.10.1 Electrical standards
- 18.10.2 Temperature standards
- 18.10.3 Pressure standards
- 18.10.4 Flow standards
- 18.10.5 Analytical standards
- 18.11Review of fundamental principles
- 19 Continuous pressure measurement
- 19.1 Manometers
- 19.2 Mechanical pressure elements
- 19.3 Electrical pressure elements
- 19.3.1 Piezoresistive (strain gauge) sensors
- 19.3.2 Differential capacitance sensors
- 19.3.3 Resonant element sensors
- 19.3.4 Mechanical adaptations
- 19.4 Force-balance pressure transmitters
- 19.5 Differential pressure transmitters
- 19.5.1 DP transmitter construction and behavior
- 19.5.2 DP transmitter applications
- 19.5.3 Inferential measurement applications
- 19.6 Pressure sensor accessories
- 19.6.1 Valve manifolds
- 19.6.2 Bleed (vent) fittings CONTENTS xiii
- 19.6.3 Pressure pulsation damping
- 19.6.4 Remote and chemical seals
- 19.6.5 Filled impulse lines
- 19.6.6 Purged impulse lines
- 19.6.7 Heat-traced impulse lines
- 19.6.8 Water traps and pigtail siphons
- 19.6.9 Mounting brackets
- 19.6.10 Heated enclosures
- 19.7 Process/instrument suitability
- 19.8 Review of fundamental principles
- 20 Continuous level measurement
- 20.1 Level gauges (sightglasses)
- 20.1.1 Basic concepts of sightglasses
- 20.1.2 Interface problems
- 20.1.3 Temperature problems
- 20.2 Float
- 20.3 Hydrostatic pressure
- 20.3.1 Pressure of a fluid column
- 20.3.2 Bubbler systems
- 20.3.3 Transmitter suppression and elevation
- 20.3.4 Compensated leg systems
- 20.3.5 Tank expert systems
- 20.3.6 Hydrostatic interface level measurement
- 20.4 Displacement
- 20.4.1 Buoyant-force instruments
- 20.4.2 Torque tubes
- 20.4.3 Displacement interface level measurement
- 20.5 Echo
- 20.5.1 Ultrasonic level measurement
- 20.5.2 Radar level measurement
- 20.5.3 Laser level measurement
- 20.5.4 Magnetostrictive level measurement
- 20.6 Weight
- 20.7 Capacitive
- 20.8 Radiation
- 20.9 Level sensor accessories
- 20.10Review of fundamental principles
- 21 Continuous temperature measurement
- 21.1 Bi-metal temperature sensors
- 21.2 Filled-bulb temperature sensors
- 21.3 Thermistors and Resistance Temperature Detectors (RTDs)
- 21.3.1 Temperature coefficient of resistance (α)
- 21.3.2 Two-wire RTD circuits
- 21.3.3 Four-wire RTD circuits xiv CONTENTS
- 21.3.4 Three-wire RTD circuits
- 21.3.5 Proper RTD sensor connections
- 21.3.6 Self-heating error
- 21.4 Thermocouples
- 21.4.1 Dissimilar metal junctions
- 21.4.2 Thermocouple types
- 21.4.3 Connector and tip styles
- 21.4.4 Manually interpreting thermocouple voltages
- 21.4.5 Reference junction compensation
- 21.4.6 Law of Intermediate Metals
- 21.4.7 Software compensation
- 21.4.8 Extension wire
- 21.4.9 Side-effects of reference junction compensation
- 21.4.10 Burnout detection
- 21.5 Non-contact temperature sensors
- 21.5.1 Concentrating pyrometers
- 21.5.2 Distance considerations
- 21.5.3 Emissivity
- 21.5.4 Thermal imaging
- 21.6 Temperature sensor accessories
- 21.7 Process/instrument suitability
- 21.8 Review of fundamental principles
- 22 Continuous fluid flow measurement
- 22.1 Pressure-based flowmeters
- 22.1.1 Venturi tubes and basic principles
- 22.1.2 Volumetric flow calculations
- 22.1.3 Mass flow calculations
- 22.1.4 Square-root characterization
- 22.1.5 Orifice plates
- 22.1.6 Other differential producers
- 22.1.7 Proper installation
- 22.1.8 High-accuracy flow measurement
- 22.1.9 Equation summary
- 22.2 Laminar flowmeters
- 22.3 Variable-area flowmeters
- 22.3.1 Rotameters
- 22.3.2 Weirs and flumes
- 22.4 Velocity-based flowmeters
- 22.4.1 Turbine flowmeters
- 22.4.2 Vortex flowmeters
- 22.4.3 Magnetic flowmeters
- 22.4.4 Ultrasonic flowmeters
- 22.4.5 Optical flowmeters
- 22.5 Positive displacement flowmeters
- 22.6 Standardized volumetric flow CONTENTS xv
- 22.7 True mass flowmeters
- 22.7.1 Coriolis flowmeters
- 22.7.2 Thermal flowmeters
- 22.8 Weighfeeders
- 22.9 Change-of-quantity flow measurement
- 22.10Insertion flowmeters
- 22.11Process/instrument suitability
- 22.12Review of fundamental principles
- 23 Continuous analytical measurement
- 23.1 Conductivity measurement
- 23.1.1 Dissociation and ionization in aqueous solutions
- 23.1.2 Two-electrode conductivity probes
- 23.1.3 Four-electrode conductivity probes
- 23.1.4 Electrodeless conductivity probes
- 23.2 pH measurement
- 23.2.1 Colorimetric pH measurement
- 23.2.2 Potentiometric pH measurement
- 23.3 Chromatography
- 23.3.1 Manual chromatography methods
- 23.3.2 Automated chromatographs
- 23.3.3 Species identification
- 23.3.4 Chromatograph detectors
- 23.3.5 Measuring species concentration
- 23.3.6 Industrial applications of chromatographs
- 23.3.7 Chromatograph sample valves
- 23.3.8 Improving chromatograph analysis time
- 23.4 Introduction to optical analyses
- 23.5 Dispersive spectroscopy
- 23.6 Non-dispersive Luft detector spectroscopy
- 23.6.1 Single-beam analyzer
- 23.6.2 Dual-beam analyzer
- 23.6.3 Luft detectors
- 23.6.4 Filter cells
- 23.7 Gas Filter Correlation (GFC) spectroscopy
- 23.8 Fluorescence
- 23.9 Chemiluminescence
- 23.10Analyzer sample systems
- 23.11Safety gas analyzers
- 23.11.1 Oxygen gas
- 23.11.2 Lower explosive limit (LEL)
- 23.11.3 Hydrogen sulfide gas
- 23.11.4 Carbon monoxide gas
- 23.11.5 Chlorine gas
- 23.12Review of fundamental principles
- 24 Machine vibration measurement xvi CONTENTS
- 24.1 Vibration physics
- 24.1.1 Sinusoidal vibrations
- 24.1.2 Non-sinusoidal vibrations
- 24.2 Vibration sensors
- 24.3 Monitoring hardware
- 24.4 Mechanical vibration switches
- 24.5 Review of fundamental principles
- 25 Electric power measurement and control
- 25.1 Electrical power grids
- 25.2 Interconnected generators
- 25.3 Single-line electrical diagrams
- 25.4 Circuit breakers and disconnects
- 25.4.1 Low-voltage circuit breakers
- 25.4.2 Medium-voltage circuit breakers
- 25.4.3 High-voltage circuit breakers
- 25.4.4 Reclosers
- 25.5 Electrical sensors
- 25.5.1 Potential transformers
- 25.5.2 Current transformers
- 25.5.3 Transformer polarity
- 25.5.4 Instrument transformer safety
- 25.5.5 Instrument transformer test switches
- 25.5.6 Instrument transformer burden and accuracy
- 25.6 Introduction to protective relaying
- 25.7 ANSI/IEEE function number codes
- 25.8 Instantaneous and time-overcurrent (50/51) protection
- 25.9 Differential (87) current protection
- 25.10Directional overcurrent (67) protection
- 25.11Distance (21) protection
- 25.11.1 Zone overreach and underreach
- 25.11.2 Line impedance characteristics
- 25.11.3 Using impedance diagrams to characterize faults
- 25.11.4 Distance relay characteristics
- 25.12Auxiliary lockout (86) relays
- 25.13Review of fundamental principles
- 26 Signal characterization
- 26.1 Flow measurement from differential pressure
- 26.2 Flow measurement in open channels
- 26.3 Material volume measurement
- 26.4 Radiative temperature measurement
- 26.5 Analytical measurements
- 26.6 Review of fundamental principles
- 27 Control valves CONTENTS xvii
- 27.1 Sliding-stem valves
- 27.1.1 Globe valves
- 27.1.2 Gate valves
- 27.1.3 Diaphragm valves
- 27.2 Rotary-stem valves
- 27.2.1 Ball valves
- 27.2.2 Butterfly valves
- 27.2.3 Disk valves
- 27.3 Dampers and louvres
- 27.4 Valve packing
- 27.5 Valve seat leakage
- 27.6 Control valve actuators
- 27.6.1 Pneumatic actuators
- 27.6.2 Hydraulic actuators
- 27.6.3 Self-operated valves
- 27.6.4 Electric actuators
- 27.6.5 Hand (manual) actuators
- 27.7 Valve failure mode
- 27.7.1 Direct/reverse actions
- 27.7.2 Available failure modes
- 27.7.3 Selecting the proper failure mode
- 27.8 Actuator bench-set
- 27.9 Pneumatic actuator response
- 27.10Valve positioners
- 27.10.1 Force-balance pneumatic positioners
- 27.10.2 Motion-balance pneumatic positioners
- 27.10.3 Electronic positioners
- 27.11Split-ranging
- 27.11.1 Complementary valve sequencing
- 27.11.2 Exclusive valve sequencing
- 27.11.3 Progressive valve sequencing
- 27.11.4 Valve sequencing implementations
- 27.12Control valve sizing
- 27.12.1 Physics of energy dissipation in a turbulent fluid stream
- 27.12.2 Importance of proper valve sizing
- 27.12.3 Gas valve sizing
- 27.12.4 Relative flow capacity
- 27.13Control valve characterization
- 27.13.1 Inherent versus installed characteristics
- 27.13.2 Control valve performance with constant pressure
- 27.13.3 Control valve performance with varying pressure
- 27.13.4 Characterized valve trim
- 27.14Control valve problems
- 27.14.1 Mechanical friction
- 27.14.2 Flashing
- 27.14.3 Cavitation xviii CONTENTS
- 27.14.4 Choked flow
- 27.14.5 Valve noise
- 27.14.6 Erosion
- 27.14.7 Chemical attack
- 27.15Review of fundamental principles
- 28 Variable-speed motor controls
- 28.1 DC motor speed control
- 28.2 AC motor speed control
- 28.3 AC motor braking
- 28.3.1 DC injection braking
- 28.3.2 Dynamic braking
- 28.3.3 Regenerative braking
- 28.3.4 Plugging
- 28.4 Motor drive features
- 28.5 Use of line reactors
- 28.6 Metering pumps
- 28.7 Review of fundamental principles
- 29 Closed-loop control
- 29.1 Basic feedback control principles
- 29.2 On/off control
- 29.3 Proportional-only control
- 29.4 Proportional-only offset
- 29.5 Integral (reset) control
- 29.6 Derivative (rate) control
- 29.7 Summary of PID control terms
- 29.7.1 Proportional control mode (P)
- 29.7.2 Integral control mode (I)
- 29.7.3 Derivative control mode (D)
- 29.8 P, I, and D responses graphed
- 29.8.1 Responses to a single step-change
- 29.8.2 Responses to a momentary step-and-return
- 29.8.3 Responses to two momentary steps-and-returns
- 29.8.4 Responses to a ramp-and-hold
- 29.8.5 Responses to an up-and-down ramp
- 29.8.6 Responses to a multi-slope ramp
- 29.8.7 Responses to a multiple ramps and steps
- 29.8.8 Responses to a sine wavelet
- 29.8.9 Note to students regarding quantitative graphing
- 29.9 Different PID equations
- 29.9.1 Parallel PID equation
- 29.9.2 Ideal PID equation
- 29.9.3 Series PID equation
- 29.10Pneumatic PID controllers
- 29.10.1 Proportional control action CONTENTS xix
- 29.10.2 Automatic and manual modes
- 29.10.3 Derivative control action
- 29.10.4 Integral control action
- 29.10.5 Fisher MultiTrol
- 29.10.6 Foxboro model 43AP
- 29.10.7 Foxboro model
- 29.10.8 External reset (integral) feedback
- 29.11Analog electronic PID controllers
- 29.11.1 Proportional control action
- 29.11.2 Derivative and integral control actions
- 29.11.3 Full-PID circuit design
- 29.11.4 Single-loop analog controllers
- 29.11.5 Multi-loop analog control systems
- 29.12Digital PID controllers
- 29.12.1 Stand-alone digital controllers
- 29.12.2 Direct digital control (DDC)
- 29.12.3 SCADA and telemetry systems
- 29.12.4 Distributed Control Systems (DCS)
- 29.12.5 Fieldbus control
- 29.13Practical PID controller features
- 29.13.1 Manual and automatic modes
- 29.13.2 Output and setpoint tracking
- 29.13.3 Alarm capabilities
- 29.13.4 Output and setpoint limiting
- 29.13.5 Security
- 29.14Digital PID algorithms
- 29.14.1 Introduction to pseudocode
- 29.14.2 Position versus velocity algorithms
- 29.15Note to students
- 29.15.1 Proportional-only control action
- 29.15.2 Integral-only control action
- 29.15.3 Proportional plus integral control action
- 29.15.4 Proportional plus derivative control action
- 29.15.5 Full PID control action
- 29.16Review of fundamental principles
- 30 Process dynamics and PID controller tuning
- 30.1 Process characteristics
- 30.1.1 Self-regulating processes
- 30.1.2 Integrating processes
- 30.1.3 Runaway processes
- 30.1.4 Steady-state process gain
- 30.1.5 Lag time
- 30.1.6 Multiple lags (orders)
- 30.1.7 Dead time