























Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Calculo das curvas de remanso. Curvas de remanso têm influência nas obras hidráulicas. Há interesse em conhecê-las em detalhe para cada caso ...
Tipologia: Exercícios
1 / 31
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Hidr´aulica II
Maria M. Gamboa
o Semestre de 2019. 11/06/
Em um canal retangular longo, com I 0
= 2m/km, n = 0. 015 e
largura 3 m existe uma comporta plana vertical, com carga a
montante de 1. 0 m e abertura de fundo 0. 15
A jusante, afastado, h´a um vertedor retangular de parede fina com
largura da soleira 2. 8 m e altura de 0. 70 m.
Trace o perfil da linha d’´agua com toda a informa¸c˜ao poss´ıvel,
fazendo o c´alculo de se¸c˜oes de controle, alturas conjugadas ou
alternadas (se aplica), etc.
Lembrando, com referˆencia ao capitulo 12 do livro Hidr´aulica Basica, Porto:
b
√
2 gy e (eq. 12.56)
C d
= 0. 611
(
y−b
y+15b
) 0
. 072
Q = 1.838(L − 0. 2 h)h
3 / 2
Respostas livro: y 1
= 0. 183 , y 2
= 0. 308 , M 3 e M 1 , y 2
= 0. 308 m at´e 1. 065
Curvas de remanso tˆem influˆencia nas obras hidr´aulicas. H´a interesse
em conhecˆe-las em detalhe para cada caso.
dy
dx
I 0 − If
1 − F r
2
Curvas de remanso tˆem influˆencia nas obras hidr´aulicas. H´a interesse
em conhecˆe-las em detalhe para cada caso.
dy
dx
I 0 − If
1 − F r
2
M´etodo de passo direto (Direct step method)
M´etodo de passo ’padr˜ao’ (Standard step method)
Considerando:
dE
dx
0
f
dE
dy
2 B
gA
3
= 1 − F r
2
dy
dx
0
f
1 − F r
2
dx =
dE
0
f
→ ∆x =
0
f
Entre se¸c˜oes 1 e 2: x 2
− x 1
2
1
If
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
com y 2
, A 2
e E 2
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
com y 2
, A 2
e E 2
∆E
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
com y 2
, A 2
e E 2
∆E
¯y
com y¯, na eq. resistˆencia (Manning):
¯ If
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
com y 2
, A 2
e E 2
∆E
¯y
com y¯, na eq. resistˆencia (Manning):
¯ If
I 0
−
¯ I f
Resumo do m´etodo
E conhecida a profundidade y 1
no ponto x 1
. Tamb´em E 1
Inicio: Extremo jusante se fluvial, montante se torrencial.
onde acontece uma altura y 2
dada.
com y 2
, A 2
e E 2
∆E
¯y
com y¯, na eq. resistˆencia (Manning):
¯ If
I 0
−
¯ I f
∆x e x 2
Em geral, ∆x > 0 no torrencial, ∆x < 0 no fluvial
y cresce em curvas na regi˜ao 1 e 3, y decresce curvas na regi˜ao 2
Desvantagens do m´etodo de passo direto