



Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Lista de exercícios
Tipologia: Exercícios
1 / 5
Esta página não é visível na pré-visualização
Não perca as partes importantes!
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1. If
a b a b
n n n n
1 1 be the A.M. of a & b,
then n = (A) 1 (B) - 1 (C) 0 (D) None of these
2. The first term of an A.P. is 2 and common difference is 4. The sum of its 40 terms will be : (A) 3200 (B) 1600 (C) 200 (D) 2800 3. If the sum of the roots of the equation ax^2 + bx + c = 0 be equal to the sum of the reciprocals of their squares, then bc^2 , ca^2 , ab^2 will be in : (A) A.P. (B) G.P. (C) H.P. (D) None of these 4. If a & b are two different positive real numbers, then which of the following relations is true?
(A) (^2) a b > (a + b)
(B) 2 a b < (a + b)
(C) (^2) a b = (a + b) (D) None of these
5. If the 4th, 7th^ and 10th^ terms of a G.P. be a, b, c respectively, then the relation between a, b, c is :
(A) b =
a +c 2
(B) a^2 = bc
(C) b^2 = ac (D) c^2 = ab
6. If a1/x^ = b1/y^ = c1/z^ and a, b, c are in G.P. then x, y, z will be in : (A) A.P. (B) G.P.
(C) H.P. (D) None of these
7. If (p + q)th^ term of a G.P. be m and (p − q)th^ term be n, then the pth^ term will be :
m n
(B) mn
(C) (m n)3/2^ (D) None of these
8. If pth, qth, rth^ and sth^ terms of an A.P. be in G.P., then (p - q), (q - r), (r - s) will be in : (A) G.P. (B) A.P. (C) H.P. (D) None of these 9. If
to n terms to terms
then the value of n is : (A) 35 (B) 36 (C) 37 (D) 40
10. The sum of the first n terms of the
series
(A) 2 n^ - n - 1 (B) 1 - 2 -n (C) n + 2 - n^ - 1 (D) 2 n^ - 1
11. If the arithmetic, geometric & harmonic means between two distinct positive real numbers be A, G & H respectively, then the relation between them is : (A) A > G > H (B) A > G > H (C) H < G < A (D) G > A > H 12. If the arithmetic, geometric & harmonic means between two positive and real numbers be A, G and H, then : (A) A^2 = GH (B) H^2 = AG (C) G = AH (D) G^2 = AH
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
13. If a 1 , a 2 , a 3 , ...... , an are in A.P., where ai > 0 for all i, then the value of 1 a 1 + a 2
a 2 + a 3
a (^) n − 1 + an
n a a (^) n
1
n a a (^) n
1
n a a (^) n
1
n a a (^) n
1
14. x = 1 + a + a^2 + ...... + ∞ (a < 1) y = 1 + b + b^2 + ...... + ∞ (b < 1) Then the value of 1 + ab + a^2 b^2 + ..... ∞ is :
(A)
x y x + y− 1
x y x + y+ 1
x y x − y− 1
x y x − y+ 1
15. If A 1 , A 2 ; G 1 , G 2 & H 1 , H 2 be two AM’s, GM’s & HM’s between two
quantities, then the value of
1 2 1 2
is
1 2 1 2
1 2 1 2
1 2 1 2
1 2 1 2
16. If the (m + 1)th, (n + 1)th^ and (r + 1)th terms of an A.P. are in G.P. & m, n, r are in H.P., then the value of the ratio of the common difference to the first term of the A.P. is :
n
n
(C) - n 2
(D) n 2
17. Given ax^ = by^ = cz^ = du^ and a, b, c, d are in G.P., then x, y, z, u are in : (A) A.P. (B) G.P. (C) H.P. (D) None of these 18. The sum to n terms of the infinite series 1.3^2 + 2.5^2 + 3.7^2 + ...... ∞ is
(A)
n 6
(n + 1) (6n^2 + 14n + 7)
n 6
(n + 1) (2n + 1) (3n + 1)
(C) 4n^3 + 4n^2 + n (D) None of these
19. If a, b, c are in A.P., b, c, d are in G.P. & c, d, e are in H.P., then a, c, e are in : (A) No particular order (B) A.P. (C) G.P. (D) H.P. 20. If 2x, x + 8, 3x + 1 are in A.P., then the value of x will be : (A) 3 (B) 7 (C) 5 (D) - 2 21. The harmonic mean of two numbers is 4 and the arithmetic and geometric means satisfy the relation, 2A + G^2 = 27, the numbers are : (A) 6, 3 (B) 5, 4 (C) 5, - 2.5 (D) - 3, 1 22. If the sum of n terms of an A.P. is 2n^2 + 5n, then the nth^ term will be : (A) 4n + 3 (B) 4n + 5
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
34. The sum of infinite terms of a G.P. is x and on squaring the each term of it, the sum will be y, then the common ratio of this series is :
x y x y
2 2 2 2
x y x y
2 2 2 2
x y x y
2 2
x y x y
2 2
35. If 9 A.M.’s and H.M.’s are inserted between the 2 and 3 and if the harmonic mean H is corresponding to
arithmetic mean A, then A +
36. If the pth, qth^ and rth^ term of a G.P. and H.P. are a, b, c then, a (b − c) log a + b (c − a) log b + c (a − b) log c = (A) - 1 (B) 0 (C) 1 (D) Does not exist 37. The sum of n terms of the following series, 1 + (1 + x) + (1 + x + x^2 ) + ...... will be :
x x
n (B)
x
1 n 1
x
1 1 n 1
(D) None of these
38. If log 3 2 , log 3 (2x^ - 5) and
log 3 2
x (^) − ^
are in A.P., then x is
equal to :
(A) 1,
(D) None of these
39. If the product of three terms of G.P. is 512. If 8 added to first and 6 added to second term, so that number may be in A.P., then the numbers are : (A) 2, 4, 8 (B) 4, 8, 16 (C) 3, 6, 12 (D) None of these 40. If the roots of the equation, x^3 - 12x^2 + 39x - 28 = 0 are in A.P., then their common difference will be (A) ± 1 (B) ± 2 (C) ± 3 (D) ± 4 41. Let n (> 1) be a positive integer, then the largest integer m such that (nm+1) divides (1 + n + n^2 + ...... + n^127 ), is (A) 32 (B) 63 (C) 64 (D) 127 42. If p, q, r are in A.P. and are positive, the roots of the quadratic equation, px^2 + qx + r = 0 are all real for :
(A) r p
(C) All p & r (D) No p & r
43. Let an be the nth^ term of the G.P. of
positive numbers. Let n =
∑ 1
100 a2n = α and
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
n =
∑ 1
100 a2n - 1 = β , such that α ≠ β, then
the common ratio is :
(A)
α β
β α
α β
β α
44. Let Sn denotes the sum of n terms of
an A.P. If S2n = 3 Sn, then ratio
n n
45. If a, b, c are in G.P., then : (A) a^2 , b^2 , c^2 are in G.P. (B) a^2 (b + c), c^2 (a + b), b^2 (a + c) are in G.P.
(C)
a b + c
b c + a
c a + b
are in G.P.
(D) None of the above