

Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Este documento contém um conjunto de questões relacionadas à geometria de reas nadas, incluindo distâncias entre linhas, equações de pares de retas que se bissecam um ângulo e equações de retas perpendiculares. Além disso, fornecemos as respostas corretas para cada questão.
Tipologia: Exercícios
1 / 3
Esta página não é visível na pré-visualização
Não perca as partes importantes!
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1. Distance between the lines represented by the equation, x^2 + 2 3 xy + 3y^2 − 3x − 3 3 y − 4 = 0 is :
(A)
2. The values of h for which the equation 3x^2 + 2 hxy − 3y^2 − 40x + 30y − 75 = 0 represents a pair of straight lines, are (A) 4, 4 (B) 4, 6 (C) 4, - 4 (D) 0, 4 3. If pairs of straight lines, x^2 − 2 mxy − y^2 = 0 & x^2 − 2 nxy − y^2 = 0 be such that each pair bisects the angle between the other pair, then mn is equal to : (A) 1 (B) - 1
(C) 0 (D) -
4. The nature of straight lines represented by the equation, 4x^2 + 12 xy + 9 y^2 = 0 is : (A) Real and coincident (B) Real and different (C) Imaginary and different (D) None of the above 5. The equation to the pair of straight lines through the origin which are perpendicular to the lines, 2x^2 - 5 xy + y^2 = 0, is : (A) 2x^2 + 5 xy + y^2 = 0 (B) x^2 + 2 y^2 + 5 xy = 0 (C) x^2 - 5 xy + 2 y^2 = 0 (D) 2 x^2 + y^2 - 5 xy = 0 6. Acute angle between the lines
represented by, (x^2 + y^2 ) 3 = 4 xy is
π 6
π 4
π 3
(D) None of these
7. The equation of the pair of straight lines, each of which makes an angle α with the line y = x, is : (A) x^2 + 2 xy sec 2 α + y^2 = 0 (B) x^2 + 2 xy cosec 2 α + y^2 = 0 (C) x^2 - 2 xy cosec 2 α + y^2 = 0 (D) x^2 - 2 xy sec 2 α + y^2 = 0 8. The equation, xy + a^2 = a (x + y) represents : (A) A parabola (B) A pair of straight lines (C) An ellipse (D) Two parallel straight lines 9. The combined equation of the bisectors of the angle between the
lines represented by (x^2 + y^2 ) 3 = 4xy is : (A) y^2 - x^2 = 0 (B) xy = 0
(C) x^2 + y^2 = 2 xy (D)
x 2 y^2 3
xy 2
10. The lines joining the origin to the points of intersection of the line, y = mx + c and the circle x^2 + y^2 = a^2 will be mutually perpendicular, if : (A) a^2 (m^2 + 1) = c^2 (B) a^2 (m^2 − 1) = c^2 (C) a^2 (m^2 + 1) = 2c^2 (D) a^2 (m^2 - 1) = 2c^2 11. The straight lines joining the origin to the points of intersection of the line 2x+ y = 1 & curve 3x^2 + 4xy − 4x + 1 = 0
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
include an angle :
(A)
π 2
π 3
π 4
π 6
12. The equation, x^2 - 7 xy + 12y^2 = 0 represents a : (A) Circle (B) Pair of parallel straight lines (C) Pair of perpendicular st. lines (D) Pair of non-perpendicular intersecting straight lines 13. The angle between the pair of st. lines, y^2 sin^2 θ − xy sin^2 θ + x^2 (cos^2 θ − 1) = 1 is
(A)
π 3
π 4
π (D) None of these
14. Mixed term xy is to be removed from the general equation, ax^2 + by^2 + 2 hxy + 2 fy + 2 gx + c = 0. One should rotate the axes through an angle θ given by tan 2θ equal to :
a b h
2 h a +b
a b h
2 h (a −b)
15. If the equation, ax^2 + 2 hxy + by^2 = 0 has the one line as the bisector of angle between the co-ordinate axes, then : (A) (a − b)^2 = h^2 (B) (a + b)^2 = h^2 (C) (a − b)^2 = 4h^2 (D) (a + b)^2 = 4h^2 16. The figure formed by the lines,
x^2 + 4 xy + y^2 = 0 and x - y = 4, is : (A) A right angled triangle (B) An isosceles triangle (C) An equilateral triangle (D) None of these
17. If the equations of opposite sides of a parallelogram are, x^2 - 7x + 6 = 0 and y^2 − 14y + 40 = 0, then the equation of its one diagonal is : (A) 6x + 5y + 14 = 0 (B) 6x - 5y + 14 = 0 (C) 5x + 6y + 14 = 0 (D) 5x - 6y + 14 = 0 18. The product of perpendiculars drawn from the origin to the lines represented by the equation, ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c = 0, will be :
a b a 2 − b 2 + 4 h^2
b c a 2 − b 2 + 4 h^2
c a a 2 + b 2 + 4 h^2
c (a − b )^2 + 4 h^2
19. The orthocentre of the triangle formed by the lines, xy = 0 and x + y = 1 is
20. If one of the lines of the pair ,