




Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Lista de exercícios
Tipologia: Exercícios
1 / 8
Esta página não é visível na pré-visualização
Não perca as partes importantes!
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1. If f(x) = cos (log x), then
f(x) f(y) - 1
f xy + f (x y ) (^) =
(A) - 1 (B) (^12) (C) - 2 (D) None of these
2. If f(x) =
x (^) x x x
sin , ,
, then
Limit x → 0 f(x) = (A) 1 (B) 0 (C) - 1 (D) None of these
3. The function,
f(x) = log ( 1 + a x) − log ( 1 −b x) x is not defined at x = 0. The value which should be assigned to f at x = 0, so that it is continuous at x = 0, is : (A) a - b (B) 1 + b (C) log a + log b (D) None of these
4. Let f(x) =
x x x x if x k if x
3 2 2
If f(x) be continuous for all x, then k is equal to : (A) 7 (B) - 7 (C) ± 7 (D) None of these
5. Limit x → 1 (1 - x) tan π^ x 2
(A) π 2 (B) π + 2
π (D) None of these
6. In order that the function, f(x) = (x + 1)1/x^ is continuous at x = 0, f(0) must be defined as : (A) f(0) = 0 (B) f(0) = e (C) f(0) = 1/e (D) f(0) = 1 7. Domain of the function,
sin l n
x x is :
(A) [- 2, 1] (B) (- 2, 1) (C) [- 2, 1) (D) (- 2, 1]
8. If f(9) = 9, f ′ (9) = 4, then
Limit x → 9 f x x
9. Limit h → 0 x h x h
2 x
x (C) (^2) x (D) (^) x
10. Limit x → 0
x x
(A) log 2 (B) log 4 (C) log 2 (D) None of these
11. If f(x) =
x x x for x for x
2 2
then : (A) Limit x → 1 + 0 f(x) = 2 (B) Limit x → 1 − f(x) = 3 (C) f(x) is discontinuous at x = 1
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
(D) None of these
12. If f(x) =
sin x cos x x^ when x when x
then : (A) Limit x → 0 + f(x) ≠ 0 (B) Limit x → 0 −f(x) = 0 (C) f(x) is continuous at x = 0 (D) None of these
13. Limit x → π 4 sin α cosα α π
(C) 1 (D) None of these
14. Limit x → π 2 tan x log sin x =
(A) 0 (B) 1 (C) - 1 (D) None of these
15. Limit x → 0 tan sin
x x x x
16. Limit x → 0 cos^ a x^ cosb x x
(A) a^ b
2 2 2
− (^) (B) b 2 a^2 2
(C) a^2 - b^2 (D) b^2 - a^2
17. If f(x) =
x
x
x x x
, then :
(A) Limit x → 0 + f(x) = 1
(B) Limit x → 0 − f(x) = 1 (C) f(x) is discontinuous at x = 0 (D) None of these
18. The value of Limit x → ∞^ x^ bx x ax
2 2
is
b a
(A) log b a
(B) log a b
(C) a b (D) log ab
20. If f(x) =
sin (^) , [ ] , [ ]
x x when^ x 0 when^ x
where
[x] is greatest integer function, then Limit x → 0 f(x) = (A) - 1 (B) 1 (C) 0 (D) None of these
21. Limit x → 0 sin x x x
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
(B) f(x) is continuous at x = π 2 (C) f(x) is continuous at x = 0 (D) None of these
32. If f(x) =
( )
1 4
16 4
−
cos (^) , , ,
x x x x
a
when x when x when x
is continuous at x = 0, then the value of ‘a’ will be : (A) 8 (B) - 8 (C) 4 (D) None of these
33. Domain of the function,
f(x) = x x x
is :
(A) (1, 2) (B) (− ∞, − 2) ∪ (2, ∞) (C) (− ∞, − 2) ∪ (1, ∞) (D) (− ∞, ∞) − (1, ± 2)
34. Limit h → 0
sin cos cos sin
π (^) + − π+
−
h h h h h
35. If f(x) =
a x b
x
when x when x when x
2 2 1
is
continuous at x = 1, then the most suitable value of a, b are : (A) a = 2, b = 0
(B) a = 1, b = - 1 (C) a = 4, b = 2 (D) All the above
36. If function f(x) = 1 2 - tan π x 2
(− 1 < x < 1) & g (x) = (^3) + 4 x − 4 x^2 , then the domain of gof is :
(A) (- 1, 1) (B) −
37. Limit x → ∞^ x e
n x =^0 such^ that^ n^ is^ an integer for : (A) No value of n (B) All values of n (C) Only negative values of n (D) Only positive values of n
38. If f(x) =
x x x when x when x
, then
(A) f(x) is continuous at x = 0 (B) f(x) is discontinuous at x = 0 (C) Limit x → 0 f(x) = 2 (D) None of these
39. If f(x) = x x
when x when x
2 5
then
(A) f(x) is continuous at x = 1 (B) f(x) is discontinuous at x = 1 (C) Limit x → 1 f(x) = 1 (D) None of these
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
40. If f(x) =
x x x x a
when x when x
2 2
is continuous at x = - 5, then the value of ‘a’ will be :
(A) 3 2
41. If f : R → R be a diff. function and f(1) = 4, then the value of,
Limit x → 1 2 4 1
t x
f x ∫ −
( ) dt =
(A) 8 f ′ (1) (B) 4 f ′ (1) (C) 2 f ′ (1) (D) f ′ (1)
42. If f(a) = 2, f ′ (a) = 1, g(a) = 1, g ′ (a) = 2,
then Limit x →a^ g x^ f a^ g a^ f x x a
43. The range of f(x) = cos x - sin x, is (A) (- 1, 1) (B) [- 1, 1)
(C) − ^
π π 2 2
44. If f(x) =
x
x
x x x
λ 4 3 4
is continuous
at x = 3, then λ = (A) 4 (B) 3 (C) 2 (D) 1
45. Let,
f(x) =
( 1 ) 6 0 0 (^0 ) 2 3
sin , , ,
sin
tan tan
x b e
x x x
a x
x x
π
π
then the values of a & b if f is continuous at x = 0, are respectively
(A) 2 3
, e2/
, e3/2^ (D) None of these
46. Limit x → ∞
x x
+^ x
3 is :
(A) 1 (B) e (C) e^2 (D) e^3
47. Let function f(x) = x^2 + x + sin x - cos x + log (1 + x) be defined over the interval [0, 1]. The odd extentions of f(x) to interval [- 1, 1] is : (A) x^2 + x + sin x + cos x − log (1 + x) (B) − x^2 + x + sin x + cos x − log (1 + x) (C) − x^2 + x + sin x − cos x − log (1 + x) (D) None of these 48. The value of,
Limit n → ∞^ n n
n n
n 1 4 9 n n
is equal to :
(A) π 2 (B) π 4 (C) 1 (D) None of these
49. Limit n → ∞
n n n
..... (^) is
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
62. If f(x) = sin , , ,
x x n n Z 2 otherwise
π and
g(x) =
x x x x
, then
Limit x → 0 g {f(x)} is : (A) 5 (B) 6 (C) 7 (D) 1
63. The values of a & b such that,
Limit x → 0 x^ a^ x^ b^ x x
( 1 cos ) sin 3
, (D) None of these
64. If f(x) = (a - xn)1/n, where a > 0 and n is a positive integer, then f [f(x)] = (A) x^3 (B) x^2 (C) x (D) None of these 65. If f is an even function defined on the interval (- 5, 5), then four real values of x satisfying the equation,
f(x) = f x x
are :
66. Let f(x) = [x] sin π [ x + ]
, where [.]
denotes the greatest integer function. The domain of f is ______ and the points of discontinuity of f in the domain are : (A) {x ∈ R x ∈ [− 1, 0)} , I − {0} (B) {x ∈ R x ∉ [1, 0)} , I − {0} (C) {x ∈ R x
(D) None of these
67. The inverse of the function,
e ef(x) = e e
x x x x
− −
(A) loge^ x x
1 2/ (B) loge^ x x
1 2/
(C) loge^ x 2 x
1 2 −
/ (D) loge^ x x
2
68. If the domain of function, f(x) = x^2 - 6x + 7 is (− ∞, ∞), then the range of function is : (A) (− ∞, ∞) (B) (− 2, ∞) (C) (− 2, 3) (D) (− ∞, − 2) 69. If f(x) = x x − 1 , then f a f a
(A) f (- a) (B) f (1/a)
QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
(C) f(a^2 ) (D) f
a a 1
70. Function f(x) = x x x x
is a
continuous function : (A) For all real values of x (B) For x = 2 only (C) For all real values of x such that x ≠ 2 (D) For all integral values of x only
ANSWERS
1. D 2. B 3. B 4. A 5. C 6. B