Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

65878816 - Functions - Limits - amp - Continuity - Qns, Exercícios de Matemática

Lista de exercícios

Tipologia: Exercícios

2013

Compartilhado em 06/01/2013

josimar-batista-9
josimar-batista-9 🇧🇷

4.8

(15)

37 documentos

1 / 8

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
1
QUEST TUTORIALS
Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1. If f(x) = cos (log x), then
f(x) f(y) -
1
2
(
)
[
]
fx
yf xy+( )
=
(A) - 1 (B)
1
2
(C) - 2 (D) None of these
2. If f(x) =
xxx
x
sin ,
,
10
0 0
=
, then
Limit
x0
f(x) =
(A) 1 (B) 0
(C) - 1 (D) None of these
3. The function,
f(x) =
log ( ) log ( )1 1+ a x b x
x
is
not defined at x = 0 . The value which
should be assigned to f at x = 0, so
that it is continuous at x = 0, is :
(A) a - b (B) 1 + b
(C) log a + log b (D) None of these
4. Let f(x) =
x x x
xif x
k if x
3 2
2
16 20
22
2
+ +
=
( ) ,
,
If f(x) be continuous for all x, then k
is equal to :
(A) 7 (B) - 7
(C) ± 7 (D) None of these
5.
Limit
x1
(1 - x) tan
=
(A)
π
2
(B) π + 2
(C)
2
π
(D) None of these
6. In order that the function,
f(x) = (x + 1)1/x is continuous at x = 0,
f(0) must be defined as :
(A) f(0) = 0 (B) f(0) = e
(C) f(0) = 1/e (D) f(0) = 1
7. Domain of the function,
sin ln
4
1
2
x
x
is :
(A) [- 2, 1] (B) (- 2, 1)
(C) [- 2, 1) (D) (- 2, 1]
8. If f(9) = 9, f (9) = 4, then
Limit
x9
f x
x
( )
9
3
=
(A) 2 (B) 4
(C) - 2(D) - 4
9.
x h x
h
+
=
(A)
1
2 x
(B)
1
x
(C) 2
x
(D)
x
10.
2 1
1 1
1 2
x
x
+ ( ) /
=
(A) log 2 (B) log 4
(C) log
2
(D) None of these
11. If f(x) =
x x
xfor x
for x
2
2
4 3
11
2 1
+
=
,
,
then :
(A)
Limit
x +1 0
f(x) = 2 (B)
f(x) = 3
(C) f(x) is discontinuous at x = 1
Function, Limits & Continuity
www.myengg.com
The Engineering Universe
1
Entrance Exams ,Engineering colleges in india, Placement details of IITs and NITs
www.myengg.com
pf3
pf4
pf5
pf8

Pré-visualização parcial do texto

Baixe 65878816 - Functions - Limits - amp - Continuity - Qns e outras Exercícios em PDF para Matemática, somente na Docsity!

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

1. If f(x) = cos (log x), then

f(x) f(y) - 1

2 [^ (^ ) ]

f xy + f (x y ) (^) =

(A) - 1 (B) (^12) (C) - 2 (D) None of these

2. If f(x) =

x (^) x x x

sin , ,

, then

Limit x → 0 f(x) = (A) 1 (B) 0 (C) - 1 (D) None of these

3. The function,

f(x) = log ( 1 + a x) − log ( 1 −b x) x is not defined at x = 0. The value which should be assigned to f at x = 0, so that it is continuous at x = 0, is : (A) a - b (B) 1 + b (C) log a + log b (D) None of these

4. Let f(x) =

x x x x if x k if x

3 2 2

If f(x) be continuous for all x, then k is equal to : (A) 7 (B) - 7 (C) ± 7 (D) None of these

5. Limit x → 1 (1 - x) tan π^ x 2

^

^

(A) π 2 (B) π + 2

(C) 2

π (D) None of these

6. In order that the function, f(x) = (x + 1)1/x^ is continuous at x = 0, f(0) must be defined as : (A) f(0) = 0 (B) f(0) = e (C) f(0) = 1/e (D) f(0) = 1 7. Domain of the function,

sin l n

−^2

x x is :

(A) [- 2, 1] (B) (- 2, 1) (C) [- 2, 1) (D) (- 2, 1]

8. If f(9) = 9, f ′ (9) = 4, then

Limit x → 9 f x x

(A) 2 (B) 4

(C) - 2 (D) - 4

9. Limit h → 0 x h x h

(A) 1

2 x

(B)

x (C) (^2) x (D) (^) x

10. Limit x → 0

x x

( + ) /^ −

(A) log 2 (B) log 4 (C) log 2 (D) None of these

11. If f(x) =

x x x for x for x

2 2

then : (A) Limit x → 1 + 0 f(x) = 2 (B) Limit x → 1 − f(x) = 3 (C) f(x) is discontinuous at x = 1

Function, Limits & Continuity

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(D) None of these

12. If f(x) =

sin x cos x x^ when x when x

then : (A) Limit x → 0 + f(x) ≠ 0 (B) Limit x → 0 −f(x) = 0 (C) f(x) is continuous at x = 0 (D) None of these

13. Limit x → π 4 sin α cosα α π

(A) 2 (B)

(C) 1 (D) None of these

14. Limit x → π 2 tan x log sin x =

(A) 0 (B) 1 (C) - 1 (D) None of these

15. Limit x → 0 tan sin

x x x x

(A) 0 (B) 1

(C) 1

(D) 1

16. Limit x → 0 cos^ a x^ cosb x x

(A) a^ b

2 2 2

− (^) (B) b 2 a^2 2

(C) a^2 - b^2 (D) b^2 - a^2

17. If f(x) =

x

x

x x x

, then :

(A) Limit x → 0 + f(x) = 1

(B) Limit x → 0 − f(x) = 1 (C) f(x) is discontinuous at x = 0 (D) None of these

18. The value of Limit x → ∞^ x^ bx x ax

2 2

 is

(A)

b a

(B) 1

(C) 0 (D) 4

19. Limit x → 0 

x

a x bx

(A) log b a

^

^

(B) log a b

^

(C) a b (D) log ab

20. If f(x) =

[ ]

[ ]

sin (^) , [ ] , [ ]

x x when^ x 0 when^ x

where

[x] is greatest integer function, then Limit x → 0 f(x) = (A) - 1 (B) 1 (C) 0 (D) None of these

21. Limit x → 0 sin x x x

(A) 1

(B) - 1

(C) 1

(D) - 1

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(B) f(x) is continuous at x = π 2 (C) f(x) is continuous at x = 0 (D) None of these

32. If f(x) =

( )

1 4

16 4

cos (^) , , ,

x x x x

a

when x when x when x

is continuous at x = 0, then the value of ‘a’ will be : (A) 8 (B) - 8 (C) 4 (D) None of these

33. Domain of the function,

f(x) = x x x

is :

(A) (1, 2) (B) (− ∞, − 2) ∪ (2, ∞) (C) (− ∞, − 2) ∪ (1, ∞) (D) (− ∞, ∞) − (1, ± 2)

34. Limit h → 0

[ (^ )^ (^ )]

sin cos cos sin

π (^) + − π+

h h h h h

(A) - 2

(B) - 3

(C) - 2 3 (D) 4

35. If f(x) =

a x b

x

when x when x when x

2 2 1

is

continuous at x = 1, then the most suitable value of a, b are : (A) a = 2, b = 0

(B) a = 1, b = - 1 (C) a = 4, b = 2 (D) All the above

36. If function f(x) = 1 2 - tan π x 2

^

^ ;

(− 1 < x < 1) & g (x) = (^3) + 4 x − 4 x^2 , then the domain of gof is :

(A) (- 1, 1) (B) −

^

(C) −

^

, (D) − −

^

37. Limit x → ∞^ x e

n x =^0 such^ that^ n^ is^ an integer for : (A) No value of n (B) All values of n (C) Only negative values of n (D) Only positive values of n

38. If f(x) =

x x x when x when x

^2

, then

(A) f(x) is continuous at x = 0 (B) f(x) is discontinuous at x = 0 (C) Limit x → 0 f(x) = 2 (D) None of these

39. If f(x) = x x

when x when x

2 5

+^1

then

(A) f(x) is continuous at x = 1 (B) f(x) is discontinuous at x = 1 (C) Limit x → 1 f(x) = 1 (D) None of these

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

40. If f(x) =

x x x x a

when x when x

2 2

is continuous at x = - 5, then the value of ‘a’ will be :

(A) 3 2

(B) 7

(C)

(D)

41. If f : R → R be a diff. function and f(1) = 4, then the value of,

Limit x → 1 2 4 1

t x

f x ∫ −

( ) dt =

(A) 8 f ′ (1) (B) 4 f ′ (1) (C) 2 f ′ (1) (D) f ′ (1)

42. If f(a) = 2, f ′ (a) = 1, g(a) = 1, g ′ (a) = 2,

then Limit x →a^ g x^ f a^ g a^ f x x a

(A) 1

(B) - 1

(C) 3 (D) - 3

43. The range of f(x) = cos x - sin x, is (A) (- 1, 1) (B) [- 1, 1)

(C) − ^

π π 2 2

, (D) [ −^2 ,^2 ]

44. If f(x) =

x

x

x x x

λ 4 3 4

is continuous

at x = 3, then λ = (A) 4 (B) 3 (C) 2 (D) 1

45. Let,

f(x) =

( 1 ) 6 0 0 (^0 ) 2 3

sin , , ,

sin

tan tan

x b e

x x x

a x

x x

π

π

then the values of a & b if f is continuous at x = 0, are respectively

(A) 2 3

, (B)

, e2/

(C) 3

, e3/2^ (D) None of these

46. Limit x → ∞

x x

+^ x

3 is :

(A) 1 (B) e (C) e^2 (D) e^3

47. Let function f(x) = x^2 + x + sin x - cos x + log (1 + x) be defined over the interval [0, 1]. The odd extentions of f(x) to interval [- 1, 1] is : (A) x^2 + x + sin x + cos x − log (1 + x) (B) − x^2 + x + sin x + cos x − log (1 + x) (C) − x^2 + x + sin x − cos x − log (1 + x) (D) None of these 48. The value of,

Limit n → ∞^ n n

n n

n 1 4 9 n n

is equal to :

(A) π 2 (B) π 4 (C) 1 (D) None of these

49. Limit n → ∞

n n n

..... (^) is

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(A) 99

(B) 1

(C) 1

(D) 1

62. If f(x) = sin , , ,

x x n n Z 2 otherwise

^ ≠^ ∈

π and

g(x) =

x x x x

, then

Limit x → 0 g {f(x)} is : (A) 5 (B) 6 (C) 7 (D) 1

63. The values of a & b such that,

Limit x → 0 x^ a^ x^ b^ x x

( 1 cos ) sin 3

  • − (^) = 1, are

(A)

(B) 5 ,

(C) − 5 −

, (D) None of these

64. If f(x) = (a - xn)1/n, where a > 0 and n is a positive integer, then f [f(x)] = (A) x^3 (B) x^2 (C) x (D) None of these 65. If f is an even function defined on the interval (- 5, 5), then four real values of x satisfying the equation,

f(x) = f x x

^

are :

(A) −^3 −^5 −^ +^ −^ +

(B) −^5 +^3 −^ +^ +^ −

(C) 3 5

(C) − 3 − 5 , − 3 + 5 , 3 − 5 , 3 + 5

66. Let f(x) = [x] sin π [ x + ]

^

, where [.]

denotes the greatest integer function. The domain of f is ______ and the points of discontinuity of f in the domain are : (A) {x ∈ R x ∈ [− 1, 0)} , I − {0} (B) {x ∈ R x ∉ [1, 0)} , I − {0} (C) {x ∈ R x

[− 1, 0)} , I − {0}

(D) None of these

67. The inverse of the function,

e ef(x) = e e

x x x x

− −

  • 2 is given by :

(A) loge^ x x

1 2/ (B) loge^ x x

1 2/

(C) loge^ x 2 x

1 2 −

/ (D) loge^ x x

2

68. If the domain of function, f(x) = x^2 - 6x + 7 is (− ∞, ∞), then the range of function is : (A) (− ∞, ∞) (B) (− 2, ∞) (C) (− 2, 3) (D) (− ∞, − 2) 69. If f(x) = x x − 1 , then f a f a

(A) f (- a) (B) f (1/a)

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

(C) f(a^2 ) (D) f

^

a a 1

70. Function f(x) = x x x x

is a

continuous function : (A) For all real values of x (B) For x = 2 only (C) For all real values of x such that x ≠ 2 (D) For all integral values of x only

ANSWERS

1. D 2. B 3. B 4. A 5. C 6. B

  1. B 8. A 9. A 10. B 11. C 12.C
  2. A 14. A 15. C 16. B 17. C 18.B
  3. B 20. D 21. D 22. C 23. B 24.A
  4. C 26. C 27. B 28. B 29. B 30.C
  5. A 32. A 33. B 34. D 35. D 36.A
  6. B 38. B 39. B 40. B 41. A 42.C
  7. D 44. D 45. B 46. B 47. B 48.B
  8. B 50. C 51. D 52. C 53. A 54.A
  9. B 56. B 57. C 58. A 59. A 60.D
  10. B 62. D 63. C 64. C 65. A 66.C
  11. B 68. B 69. C 70. A

www.myengg.com