Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Coeficientes de expansão de séries infinitas, Exercícios de Matemática

Uma série de questões relacionadas à expansão de séries infinitas, incluindo coeficientes de taylor e expansões de logaritmos. As questões abordam diferentes aspectos, como a determinação do coeficiente de um termo específico, a relação entre diferentes séries e a comparação de valores limites.

Tipologia: Exercícios

2013

Compartilhado em 06/01/2013

josimar-batista-9
josimar-batista-9 🇧🇷

4.8

(15)

37 documentos

1 / 3

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
1
QUEST TUTORIALS
Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439
1. The coefficient of xr in the expansion
of, 1 +
a b x
+
1!
+
( )
!
a bx+2
2
+ ...... +
( )
!
a bx
n
n
+
+ ...... is :
(A)
( )
!
a b
r
r
+
(B)
b
r
r
!
(C)
e b
r
n r
!
(D)
e
a br
+
2. If ex = y +
, then y =
(A)
e e
x x
+
2
(B)
e e
x x
2
(C) ex + e - x (D) ex - e - x
3. If y = x
x x
2 3
2 3
+
...... , then x =
(A) y
y y
2 3
2 3
+
- ......
(B) y +
y y
2 3
2 3! !
+
+ ......
(C) 1 +
y y
2 3
2 3! !
+
+ ......
(D) None of these
4.
a b
a
a b
a
a b
a
+
+
1
2
1
3
2 3
+ ....
is equal to :
(A) loge
(a - b) (B) loge
a
b
(C) loge
b
a
(D)
e
a b
a
5. If y =
xx x
3
6 9
2 3
+ + +
......
, then
x =
(A)
1
3
+ey
(B)
1
3
ey
(C) (1 - ey)1/3 (D) (1 - ey)3
6.
2
1!
+
2 4
2
+
!
+
2 4 6
3
+ +
!
+ ...... =
(A) e (B) 2 e
(C) 3 e(D) None of these
7.
1
3
+
1
2 32
.
+
1
3 33
.
+
1
4 34
.
+ ..... =
(A) loge 2 - loge 3
(B) loge 3 - loge 2
(C) loge 6(D) None of these
8. 1 +
1
3
1
5
1
7! ! !
+ +
+ ...... =
(A) e -1 (B) e
(C)
e e+
1
2
(D)
e e1
2
9. 1 +
2
2
3
3
4
4
3 3 3
! ! !
+ +
+ ...... =
(A) 2 e(B) 3 e
(C) 4 e(D) 5 e
10.
2
3
4
5
6
7! ! !
+ +
+ ...... =
(A) e (B) 2 e
(C) e2(D)
1
e
LOGARITHM
www.myengg.com
The Engineering Universe
1
Entrance Exams ,Engineering colleges in india, Placement details of IITs and NITs
www.myengg.com
pf3

Pré-visualização parcial do texto

Baixe Coeficientes de expansão de séries infinitas e outras Exercícios em PDF para Matemática, somente na Docsity!

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

1. The coefficient of xr^ in the expansion

of, 1 +

a +b x 1! +^

a + b x^2 2 + ...... + ( ) !

a b x n

  • n
  • ...... is :

(A)

a b r

  • r (B) b r

r !

(C) e^ b r

n r ! (D) (^) ea^ +br

2. If ex^ = y + (^1) + y^2 , then y =

(A)

e x^ + e−x 2

(B)

e x^ − e−x 2 (C) ex^ + e - x^ (D) ex^ - e - x

3. If y = x − x 2 x^3 2 3

  • (^) − ...... ∞ , then x =

(A) y − y 2 y^3 2 3

(B) y + y 2 y^3 2! 3!

(C) 1 +

y 2 y^3 2! 3!

(D) None of these

4.

a b a

a b a

a b a

^ −

^

^

^

^

^

2 3

  • .... is equal to :

(A) loge (a - b) (B) loge a b

^

(C) loge^ b a

^

^

(D) e

a b a ^ − ^

 

5. If y = − x^ 3 x^6 x^9 2 3

...... (^) , then

x =

(A)

  • ey (B)

− ey

(C) (1 - ey)1/3^ (D) (1 - ey)^3

6.

(A) e (B) 2 e (C) 3 e (D) None of these

7.

(A) loge 2 - loge 3 (B) loge 3 - loge 2 (C) loge 6 (D) None of these

8. 1 + 1 3

(A) e -1^ (B) e

(C) e^ +^ e

− 1 2 (D) e^ −^ e

− 1 2

3 3 3 !!!

(A) 2 e (B) 3 e (C) 4 e (D) 5 e

10.^2 3

(A) e (B) 2 e

(C) e^2 (D) 1 e

LOGARITHM

Entrance Exams ,Engineering colleges in india, Placement details of IITs and NITs

www.myengg.com

QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439

11. 1 - x + x^ x

2 3 2! 3!

(A) ex (B) e - x (C) e (D) ex 2

12. (1 + 3) loge 3 + 1 3 2

+^2

(loge 3)^2 + 1 3 2

+^3

(loge 3)^3 + ...... ∞ =

(A) 28 (B) 30 (C) 25 (D) 0

13. The sum of 1 2

is : (A) loge 23

(B) loge 3

(C) loge 21 (D) loge 3

14. The equation, (^) x 25 logx( 2 x)^2

holds for (A) x = 6 (B) x = - 3 (C) x = 3 (D) x = 7

15. The equation, loge x + loge (1 + x) = 0 is same as :

(A) x^2 + x - 1 = 0 (B) x^2 + x + 1 = 0 (C) x^2 - x - e = 0 (D) x^2 + x = 0

16. loga x is defined for (a > 0) (A) All real x (B) All negative (-) real x ≠ 1 (C) All positive (=) real x ≠ 0 (D) a ≥ e 17. If 7 7 (^ ) log x 2 − 4 x+ 5 = x - 1 , then x can have the values : (A) (2, 3) (B) 7 (C) (- 2, - 3) (D) (2, - 3) 18. loge (1 + x) = i =

∞ ∑ 1

1 i^ +^1 xi i is

defined for : (A) x ∈ (- 1, 1) (B) Any positive (+) real x (C) x ∈ (- 1, 1] (D) Any positive (+) real x (x ≠ 1)

19. If 2 x^ , 3 x + 4^ = 7x^ , then x =

(A) 4 3 7 6

log log log

e e − e

(B)

log log log

e e − e

(C) 2 4 7 6

log log log

e e − e

(D) 2 4 7 6

log log log

e e + e

Entrance Exams ,Engineering colleges in india, Placement details of IITs and NITs

www.myengg.com