




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Este documento detalla el proceso de análisis de señales vibratorias mediante el uso de Simulink. Se muestran diferentes casos, tanto sanos como dañados, y se aplican filtros analógicos de Butterworth para obtener respuestas en el dominio de la frecuencia. Se presentan gráficos de ondas temporales y espectrales, así como bodegas y normas de ganancia.
Qué aprenderás
Tipo: Ejercicios
1 / 270
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
-i-
Contenido
Pág.
Contenido i Índice de figuras iv Índice de tablas xiv Nomenclatura xvi Resumen xxii Abstract xxiv Objetivo xxvi Justificación xxvi
CAPÍTULO 1. Introducción
1.1 General 1 1.2 Revisión de la literatura 4
CAPÍTULO 2. Modelado mediante elementos finitos y
CAPÍTULO 2. simulaciones numéricas en ANSYS
2.1 Modelos numéricos basados en el Método del Elemento Finito 7 2.1.1 Elementos usados para caracterizar los componentes del MFS 9 2.1.2 Consideración de la fisura en el rotor 11 2.1.3 Características finales de los modelos 13 2.2 Resultados numéricos y análisis 14 2.2.1 Análisis modal 15 2.2.2 Incorporación de excitación externa en la chumacera 1 23 2.2.2.1 Análisis armónico fuera de línea y en línea usando el modelo FEM 1 23 2.2.2.1.1 Excitación transversal y axial 24 2.2.2.1.2 Excitación torsional 27 2.2.2.1.3 Casos especiales 31 2.2.2.2 Análisis armónico fuera de línea y en línea usando el modelo FEM 2 33 2.3 Conclusiones parciales 37
-iii-
Referencias 125
Apéndices
A. Programa realizado en MATLAB®^ versión 6.1 para obtener las frecuencias naturales y formas modales para la vibración longitudinal libre de un rotor con dos masas puntuales, un resorte interno (representando una fisura) y resortes en cada extremo (longitudinal_vibr.m). 131 B. Programa realizado en MATLAB®^ versión 6.1 para complementar al anterior programa mostrado en el Apéndice A (long_det.m). 133 C. Programa realizado en MATLAB®^ versión 6.1 para obtener las frecuencias naturales y formas modales para la vibración torsional libre de un rotor con dos masas puntuales, un resorte interno (representando una fisura) y resortes en cada extremo (torsional_vibr.m). 134 D. Programa realizado en MATLAB®^ versión 6.1 para complementar al anterior programa mostrado en el Apéndice C (tor_det.m). 136 E. Programa realizado en MATLAB®^ versión 6.1 para obtener las frecuencias naturales y formas modales para la vibración transversal libre de un rotor con dos masas puntuales, un resorte interno (representando una fisura) y resortes en cada extremo (transverse_vibr.m). 137 F. Programa realizado en MATLAB®^ versión 6.1 para complementar al anterior programa mostrado en el Apéndice E (transverse_det_3.m). 139 G. Programa realizado en MATLAB®^ versión 6.1 para obtener la magnitud de respuesta, FRF y coherencia a partir de los datos colectados durante pruebas usando martillo de impacto y el programa MRIT®^ (hammer_plots.m). 140 H. Programa realizado en MATLAB®^ versión 6.1 para obtener el tipo de excitación deseada y las correspondientes respuestas vibratorias usando actuadores piezoeléctricos (srcbarb_shaker2.m). 145 I. Bitácora de los experimentos realizados en línea usando el MFS con configuración de 4 discos (dos de aluminio y dos de acero), con y sin excitación externa, sensores triaxiales y sensor de torque instalados, y adquisición de datos mediante el sistema LDS Genesis Nicolet/Perception®. 156 J. Programas realizados por el autor de esta disertación en MATLAB®^ versión 8.0 para pos–procesar los datos del MFS (aceleración/torque vs. tiempo) adquiridos por el sistema LDS Genesis Nicolet®. 177 K. Publicaciones del autor de esta disertación. 212
-iv-
ÍNDICE DE FIGURAS
Diversos acercamientos a la sección de baja presión de turbinas de vapor usadas en plantas de generación eléctrica (Cortesía: Siemens®).
Central de ciclo combinado Finspong , Suecia (Cortesía: Siemens®). (a) Rotor de la turbina de vapor descubierto durante la construcción de la planta. (b) Conjunto turbina de vapor – generador eléctrico. (c) Vista general desde el interior de la planta. (d) Vista general desde el exterior de la planta.
Rotores completos de turbinas de vapor con sus álabes, usados en: (a) Planta de procesos químicos Cancarb , Canadá (Cortesía: Siemens®). (b) Planta petroquímica Goerlitz , Alemania (Cortesía: Siemens®).
(a) Detección a tiempo de un rotor fisurado en una turbina de vapor (Cortesía: Machine Library ®). (b) Rotor de turbina de gas fracturado por la propagación de una fisura transversal (Cortesía: Machine Library®). (c) Vista general del desastre ocurrido en la planta termoeléctrica de Kashira, Rusia (Cortesía: Thermal Engineering®). (d) Fractura del eje del generador eléctrico en la zona de entrada de agua refrigerante en la central termoeléctrica de Kashira, Rusia (Cortesía: Thermal Engineering®).
Machinery Fault Simulator ®^ y sus equivalentes modelos finales desarrollados con ANSYS ®^ incluyendo el sistema de referencia. (a) MFS. (b) Modelo FEM
Esquemas del MFS con unidades en cm. (a) MFS con dos discos de aluminio y sin sensor de torque. (b) MFS con cuatro discos (dos de acero y dos de aluminio) y con sensor de torque.
Elementos usados para representar los componentes del MFS. (a) Elemento tipo beam189. (b) Elemento tipo combin14.
Modelado de fisura transversal no respiratoria mediante cambio geométrico. (a) Sección transversal sana, sección transversal fisurada y reducción de la sección transversal del rotor debida a la fisura. (b) Características geométricas de la fisura.
2.5 Elemento tipo conta178. 12
Representación de los tipos de fisuras numéricas consideradas. (a) Fisura no respiratoria siempre abierta. (b) Fisura no respiratoria siempre cerrada. (c) Fisura respiratoria (abriendo y cerrando).
Representación del modelo 1 desarrollado en ANSYS®^ mostrando las ubicaciones donde el rotor puede estar fisurado así como los coeficientes de rigidez y amortiguamiento tanto para las chumaceras como para los soportes o fundación. (a) Modelo 1 con representación en el plano XY. (b) Coeficientes de rigidez y amortiguamiento en el plano YZ usando el modelo FEM 1.
-vi-
Diagramas amplitud vs. frecuencia (Hz) fuera de línea para el modelo FEM 1 considerando excitación torsional X en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) fuera de línea para el modelo FEM 1 considerando excitación torsional Y en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) fuera de línea para el modelo FEM 1 considerando excitación torsional Z en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) en línea para el modelo FEM 1 considerando excitación torsional X en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) en línea para el modelo FEM 1 considerando excitación torsional Y en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) en línea para el modelo FEM 1 considerando excitación torsional Z en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura
Diagramas amplitud vs. frecuencia (Hz) en línea para el modelo FEM 1 considerando excitación horizontal en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Una fisura abierta incipiente. (c) Dos fisuras incipientes con las misma orientación (abierta – abierta). (d) Dos
Diagramas amplitud vs. frecuencia (Hz) en línea para el modelo FEM 1 considerando excitación vertical en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta incipiente. (c) Fisura abierta incipiente y desalineamiento. (d) Fisura abierta incipiente y eje
Diagramas amplitud vs. frecuencia fuera de línea para el modelo FEM 2 considerando excitación vertical en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia fuera de línea para el modelo FEM 2 considerando excitación horizontal en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas frecuencia vs. amplitud fuera de línea para el modelo FEM 2 considerando excitación axial en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
-vii-
Diagramas amplitud vs. frecuencia fuera de línea para el modelo FEM 2 considerando excitación torsional X en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia fuera de línea para el modelo FEM 2 considerando excitación torsional Y en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia fuera de línea para el modelo FEM 2 considerando excitación torsional Z en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación vertical en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación horizontal en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación axial en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación torsional X en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación torsional Y en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
Diagramas amplitud vs. frecuencia en línea para el modelo FEM 2 considerando excitación torsional Z en la chumacera 1 y respuestas en la chumacera 2. (a) Eje íntegro. (b) Fisura abierta. (c) Fisura respiratoria.
3 .1 Sección transversal del rotor fisurado.^42
3.2 Configuración del modelo de vibración longitudinal. 42
3.3 Configuración del modelo de vibración torsional. 43
3.4 Configuración del modelo de vibración transversal. 43
3.5 DCL para fuerzas axiales en el extremo izquierdo de la viga^. 45
3.6 DCL en la masa m 1. 45
3.7 DCL en el extremo derecho de la viga. 46
Frecuencias naturales y formas modales para la vibración longitudinal. (a) Rotor íntegro. (b) Rotor fisurado ( p / d rotor = 0.125).
Frecuencias naturales y formas modales para la vibración longitudinal. (a) Rotor íntegro. (b) Rotor fisurado ( p / d rotor = 0.25).
Frecuencias naturales y formas modales para la vibración longitudinal. (a) Rotor íntegro. (b) Rotor fisurado ( p / d rotor = 0.50).
-ix-
Dispositivos donde fueron montados los diferentes ejes rotatorios sometidos a experimentación. (a) Machinery Fault Simulator (Spectra Quest®). (b) Superficie de poliuretano (hule espuma).
Acelerómetros utilizados para medir la respuesta vibratoria. (a) Acelerómetro triaxial 1000 mV/g (PCB®). (b) Acelerómetro triaxial 100 mV/g (PCB®). (c) Acelerómetro uniaxial 100 mV/g (PCB®).
Dispositivos usados sobre chumaceras o rotores para producir excitación. (a) Martillo de impacto (PCB®). (b) Actuadores piezoeléctricos (PCB®): Actuador de tipo parche para aplicar excitación distribuida y actuador inercial en forma de disco para aplicar excitación local.
(a) Amplificador de potencia (PCB®). (b) Tarjeta de adquisición de datos VXI DAQ E8403A (Agilent®).
Conexión de los diversos dispositivos experimentales usados: MFS– Machinery Fault Simulator , S–Sensor, SC– Signal Conditioner (Acondicionador de Señales), DAS– Data Acquisition System (Sistema de Adquisición de Datos), PA– Power Amplifier (Amplificador de Potencia), IH– Impact Hammer (Martillo de Impacto), AC– Actuator (Actuador), PS– Power Source (Fuente de Potencia) y PC- Personal Computer (Computadora Personal).
Señales de excitación usadas para conducir los actuadores. (a) Ventana rectangular. (b) Ventana de Hanning.
4.8 Frecuencias^ naturales^ y^ formas^ modales^ experimentales.^ (a)^ Eje^ íntegro. (b) Eje con fisura abierta. (c) Eje con fisura respiratoria.
Ubicaciones del desbalance de masa visto desde el motor (sólo un caso fue seleccionado en cada prueba experimental). (a) Desbalance moderado = 120.84 gr cm. (b) Desbalance severo = 340.87 gr cm.
FRF comparando eje íntegro vs. desbalance severo en el disco 1 y 2. Impacto modal en la chumacera 2 con orientación axial; respuestas en la chumacera 1: (a) vertical, (b) horizontal y (c) axial. Eje íntegro ( ____ ), desbalance severo en el disco 1 ( ____ ), desbalance severo en el disco 2 ( ____ ).
FRF comparando eje íntegro vs. desbalance severo y moderado en el disco
FRF comparando eje íntegro vs. desalineamiento moderado y severo. Impacto modal en la chumacera 2 con orientación axial; respuestas en la chumacera 1: (a) vertical, (b) horizontal y (c) axial. Eje íntegro ( ____ ), desalineamiento moderado ( ____ ), desalineamiento severo ( ____ ).
Orientaciones de la fisura transversal en el eje rotatorio (vistas desde el motor) para las pruebas fuera de línea. (a) θm = 90°, fisura en la parte de arriba. (b) θm = 0°, fisura a la mitad. (c) θm = 270°, fisura en la parte de abajo.
-x-
FRF comparando eje íntegro vs. eje fisurado. Respuestas axiales en la chumacera 2; impacto modal en la chumacera 1 con diferentes orientaciones: (a) vertical, (b) horizontal y (c) axial. Eje íntegro ( ____ ); eje fisurado, θm = 90° ( ____ ); eje fisurado, θm = 0° ( ____ ); eje fisurado, θm = 270° ( ____ ).
FRF comparando eje íntegro vs. eje fisurado. Impacto modal horizontal en la chumacera 1; respuestas en la chumacera 2 con diferentes orientaciones: (a) vertical y (b) horizontal. Eje íntegro ( ____ ); eje fisurado, θm = 90° ( ____ ); eje fisurado, θm = 0° ( ____ ); eje fisurado, θm = 270° ( ____ ).
Espectro de respuestas para barrido de excitación fuera de línea usando la función de ventana rectangular (desde 0 Hz hasta 2 kHz en 2 s); eje desmontado y colocado en la superficie de poliuretano. Respuestas medidas con acelerómetro uniaxial. (a) Excitación vertical y respuesta vertical. (b) Excitación horizontal y respuesta horizontal. (c) Excitación axial y respuesta
Espectro de respuestas para barrido de excitación fuera de línea usando la función de ventana rectangular (desde 0 Hz hasta 2 kHz en 2 s); eje desmontado y colocado en la superficie de poliuretano. Respuestas medidas con acelerómetro triaxial. (a) Excitación vertical; respuesta horizontal. (b) Excitación horizontal; respuesta vertical. (c) Excitación axial; respuesta horizontal. (d) Excitación vertical; respuesta axial. (e) Excitación horizontal;
eje fisurado, θm = 90° ( _____ ); eje fisurado, θm = 270° ( _ _ _ _ ).
Espectro de respuestas para barrido de excitación fuera de línea (desde 0 Hz hasta 2 kHz en 2 s) sobre la chumacera 1. (a) Excitación axial usando la función de ventana rectangular. (b) Excitación vertical usando la función de ventana rectangular. (c) Excitación axial usando la función de ventana de Hanning. (d) Excitación vertical usando la función de ventana de Hanning. Eje íntegro ( ____ ); eje íntegro, 2da^ prueba ( ____ ); eje fisurado, θm = 90° ( ____ ); eje fisurado, θm = 0° ( ____ ); eje fisurado, θm = 270° ( ____ ); eje fisurado, θm = 270°, 2da^ prueba ( ____ ).
Espectro de respuestas para barrido de excitación horizontal fuera de línea (desde 0 Hz hasta 2 kHz en 2 s) sobre la chumacera 1 usando la función de ventana de Hanning; respuestas en la chumacera 2 con diferentes orientaciones: (a) vertical y (b) horizontal. Eje íntegro ( ____ ); eje íntegro, 2 da^ prueba ( ____ ); eje fisurado, θm = 270° ( ____ ); eje fisurado, θm = 270°, 2da prueba ( ____ ).
Barrido de velocidad durante un arranque; respuestas en la chumacera 1 usando diferentes ejes: (a) Eje íntegro respuesta horizontal. (b) Eje íntegro respuesta vertical. (c) Eje íntegro respuesta axial. (d) Eje fisurado respuesta horizontal. (e) Eje fisurado respuesta vertical. (f) Eje fisurado
-xii-
Instrumentación y conexiones requeridas para operar el MFS y adquirir información vibratoria: MFS– Machinery Fault Simulato r, M–Motor, CF–Cople Flexible, ST–Sensor de Torque, CR–Cople Rígido, AC–Actuador, S1–Sensor triaxial 1, S2–Sensor triaxial 2, S3–Sensor triaxial 3, S4–Sensor triaxial 4, B1–Chumacera 1, B2–Chumacera 2, D1–Disco 1, D2–Disco 2, D3–Disco 3, D4–Disco 4, CMFS–Canales del MFS, SAD–Sistema de Adquisición de Datos, FA–Fuente de Alimentación, CCST–Caja de Conexiones del Sensor de Torque, AP–Amplificador de Potencia, GS–Generador de Señales, COM– Computadora y MC–Multicontacto.
Formas de onda ( waveforms ) para la configuración experimental de eje íntegro con 4 discos mostrando las 4 primeras frecuencias naturales: (a) torsional, (b) axial, (c) horizontal y (d) vertical. La respuesta axial y las respuestas transversales se midieron en la chumacera cercana al motor.
Diagramas de Bode usando la transformada de Hilbert para la respuesta torsional sin excitación externa de: (a) eje íntegro sin usar filtro ( _____ ), (b) eje con fisura abierta sin usar filtro ( _____ ) y (c) eje íntegro usando filtro S–G (
) y eje con fisura abierta usando filtro S–G ( _____ ).
Diagramas de Bode usando la transformada de Hilbert. Excitación vertical sinusoidal en la chumacera 1 a 47.57 Hz y respuesta torsional de: (a) eje íntegro sin usar filtro ( _____ ), (b) eje con fisura abierta sin usar filtro ( _____ ) y (c) eje íntegro usando filtro S–G (
) y eje con fisura abierta usando filtro S–G ( _____ ).
Diagramas de Bode usando la transformada de Hilbert. Excitación vertical sinusoidal en la chumacera 1 a 47.57 Hz y respuesta torsional de: (a) eje íntegro sin usar filtro ( _____ ), (b) eje con fisura respiratoria sin usar filtro ( _____ ) y (c) eje íntegro usando filtro S–G (
) y eje con fisura respiratoria usando filtro S–G ( _____ ).
Diagramas en el dominio de la frecuencia usando la FFT y sin aplicación de excitación externa ( ω = 100 Hz). Respuesta torsional de: (a) eje íntegro ( _____ ) y (b) eje con fisura abierta ( _____ ).
Diagramas en el dominio de la frecuencia usando la FFT ( ω = 100 Hz). Barrido de excitación sinusoidal en la dirección horizontal de la chumacera 1 de 1 mHz a 1 kHz (en 1 s) y respuesta torsional de: (a) eje íntegro ( _____ ) y (b) eje con fisura abierta ( _____ ).
Diagramas en el dominio de la frecuencia usando la FFT ( ω = 100 Hz). Barrido de excitación sinusoidal en la dirección horizontal de la chumacera 1 de 1 mHz a 1 kHz (en 1 s) y respuesta torsional de: (a) eje íntegro ( _____ ) y (b) eje con fisura respiratoria ( _____ ).
4.44 Onda madre de tipo Daubechies de sexto orden (db6). 108
Espectrogramas para la respuesta torsional sin uso de excitación externa. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta torsional sin uso de excitación externa. (a) Eje íntegro. (b) Eje con fisura respiratoria.
-xiii-
Espectrogramas para la respuesta axial de B1 usando barridos de excitación sinusoidales sobre B1 en la dirección vertical. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta axial de B1 usando barridos de excitación sinusoidales sobre B1 en la dirección vertical. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Espectrogramas para la respuesta horizontal de B1 usando barridos de excitación sinusoidales sobre B1 en la dirección axial. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta horizontal de B usando barridos de excitación sinusoidales sobre B1 en la dirección axial. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Espectrogramas para la respuesta vertical de B1 usando barridos de excitación sinusoidales sobre B1 en la dirección horizontal. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta vertical de B usando barridos de excitación sinusoidales sobre B1 en la dirección horizontal. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Espectrogramas para la respuesta axial de B2 usando barridos de excitación sinusoidales sobre B1 en la dirección vertical. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta axial de B2 usando barridos de excitación sinusoidales sobre B1 en la dirección vertical. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Espectrogramas para la respuesta horizontal de B2 usando barridos de excitación sinusoidales sobre B1 en la dirección axial. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta horizontal de B usando barridos de excitación sinusoidales sobre B1 en la dirección axial. (a) Eje íntegro. (b) Eje con fisura respiratoria.
Espectrogramas para la respuesta vertical de B2 usando barridos de excitación sinusoidales sobre B1 en la dirección horizontal. (a) Eje íntegro. (b) Eje con fisura abierta. (c) Eje con fisura respiratoria.
Diagramas de transformada de óndula para la respuesta vertical de B usando barridos de excitación sinusoidales sobre B1 en la dirección horizontal. (a) Eje íntegro. (b) Eje con fisura abierta. (c) Eje con fisura respiratoria.
-xv-
Comparación de la respuesta torsional para eje íntegro, eje con fisura abierta y eje con fisura respiratoria usando excitación externa de diferentes magnitudes y obtención del porcentaje de variación del torque entre los casos de ejes fisurados.
-xvi-
N OMENCLATURA
A , Ai : Área de la sección transversal sana
Af : Área de la sección transversal dañada
a : Escala usada en la transformada de óndula
B1 , B2 : Chumacera del lado izquierdo (cercana al motor) y chumacera del lado derecho (lejana al motor), respectivamente
B1i,j,k ; B2i,j,k : Rigidez y amortiguamiento en B1 y en B2 , respectivamente
B 1 , B 2 : Centro geométrico de la chumacera 1 y chumacera 2, respectivamente
C : Centro geométrico del disco o centro de rotación del disco
C (^) ij1 ( i,j = x,y );
C (^) ij2 ( i,j = x,y ) :
Coeficientes adimensionales de amortiguamiento en la chumacera 1 y chumacera 2, respectivamente
C 0 : Centro geométrico del disco en la posición de equilibrio dinámico
C (^) r1 , C (^) r2 : Claro radial en la chumacera 1 y chumacera 2, respectivamente
C1 : Fisura transversal entre B1 y D
C2 : Fisura transversal entre D1 y D
C3 : Fisura transversal entre D2 y B
c : Velocidad de propagación de la onda para el caso de vibración longitudinal y
cd : Amortiguamiento externo por el ambiente donde gira el rotor
cij1 ( i,j = x,y );
cij2 ( i,j = x,y ) :
Coeficientes de amortiguamiento en la chumacera 1 y chumacera 2, respectivamente
D (^) e : Amortiguamiento externo adimensional por el ambiente donde gira el rotor
D1 , D2 : Disco de aluminio del lado izquierdo (cercano al motor) y disco de aluminio del lado derecho (lejano al motor), respectivamente
D3 , D4 : Disco de acero del lado izquierdo (cercano al motor) y disco de acero del lado derecho (lejano al motor), respectivamente
d : Diámetro
d disco : Diámetro de el(los) disco(s)
d rotor : Diámetro del rotor
E : Módulo de Young
E disco : Módulo de Young del material de el(los) disco(s)
E rotor , E : Módulo de Young del material del rotor
e : Excentricidad estacionaria