


Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Predictive_Maintenance_RandomForestClassifier
Tipo: Esquemas y mapas conceptuales
1 / 4
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
RandomForestClassifier is a machine learning model based on decision trees. It belongs to a group of models called ensemble methods, which means it combines the results of many individual trees to make a more accurate and reliable final prediction. Each tree is trained on a random sample of the data, and the model chooses the class that gets the most votes from the trees. This approach reduces the risk of overfitting, improves accuracy, and works well even with noisy data or many input features. Another advantage is that it does not require a lot of data preprocessing, making it a practical and powerful tool for classification tasks 1) Initial Data Analysis The dataset contained information from machines, including variables such as product type, air temperature, process temperature, rotational speed, torque, and tool wear. The goal of the analysis was to predict the failure type that a machine might experience during its operation. The target column, called “Failure Type,” included several possible categories: No Failure, Heat Dissipation Failure, Power Failure, Tool Wear Failure, Overstrain Failure, and Random Failures. After reviewing the dataset, I found that there were no missing values, and the data was ready to be processed. 2) Data Visualization To better understand the data, I created a graphic that showed how often each failure type appeared. Most of the data belonged to the “No Failure” category, while the other failure types were very rare. This indicated that the dataset was unbalanced. Since the model would see many examples of “No Failure” and very few of the others, it could have trouble learning how to recognize the rare failure types.