







Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Difusión de metano a través de helio que no se difunde. Una corriente de metano gaseoso se difunde en un tubo recto de 0.1 m de longitud que contiene helio a 298 K y a presión total de 1.01325×105 Pa. La presión parcial de CH4 en un extremo es 1.400×104 Pa y en el otro extremo es 1.333×103 Pa. El helio es insoluble en uno de los límites, por lo que es un material en reposo que no se difunde. La difusividad puede encontrarse en la tabla 6.2-1. Calcule el flujo específico de metano en (kg mol/
Tipo: Ejercicios
1 / 13
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Cuando un fluido circula por el interior de un conducto y este tiene composición diferente a la que exista en la superficie que limita a este último, se produce una transferencia de masa entre las superficies. Tal transferencia tiene lugar, por una parte entre una de las dos interfases solido-fluido o fluido-fluido, y por otra, la porción principal del fluido. A esta transferencia de masa se le puede expresar en forma proporcional al producto de un área característica del sistema por una diferencia de concentraciones presentes en el mismo: el factor de proporcionalidad se le llama Coeficiente de Transferencia de Masa. Es evidente que la magnitud y la naturaleza de este coeficiente se hallan directamente relacionadas con la definición del área característica y con la velocidad de transferencia de masa.
COEFICIENTES DE TRANSFERENCIA DE MASA
Para facilitar la comprensión de su concepto, los coeficientes de transferencia de masa pueden verse como análogos a los coeficientes de transferencia de calor. Recordando que la Ley de Newton de enfriamiento que involucra al coeficiente de transferencia de calor h ,
𝑄 = ℎ𝐴∆𝑇 (4.1) Donde, Q Flujo de calor A Área de transferencia de calor (perpendicular a la dirección de la transferencia de calor)
En forma análoga se puede representar el flujo molar de la sustancia A difundiéndose a través de una sustancia B con la siguiente ecuación:
𝑛𝐴 = 𝑘𝑐𝐴∆𝐶𝐴 (4.2)
Esta ecuación define el coeficiente de transferencia de mas, kc con unidades de mol/tiempoáreafuerza impulsora. Existen diferentes tipos de coeficientes, unos basados en la fuerza impulsora que determina la transferencia (gradientes de concentración, presión, fracción-mol, etc)o por la fase cuya resistencia (o facilidad) representan, normalmente existen dos fases en contacto, realizándose en ambas un transporte de masa, por lo que existen coeficientes que representan la facilidad con que se transfiere un componente en alguna de las fases. A estos últimos se les llama coeficientes individuales de transferencia de masa. Existen otros que representan la resistencia (o facilidad total) de transferencia de más del sistema, basados en las propiedades o fuerza impulsora de alguna de las fases llamándose coeficientes totales o globales de transferencia de masa.
El camino que sigue un componente transportado en un sistema de dos fases es el siguiente:
La ecuación de transferencia de masa dada por:
𝑁´𝐴𝑔𝑢𝑎 = 𝑘𝑔∆𝑃𝑓𝑙𝑛 (4.3)
Donde N’Agua es el número de moles de agua transferidos al aire por unidad de área de transferencia de masa, kg es el coeficiente de transferencia de masa y P fln es la fuerza impulsora promedio. N’Agua se calcula mediante la siguiente expresión.
Durante la operación el gradiente de presiones no es constante, debido a que cada instante que pasa, el transporte de material hace que varíe dicho gradiente, por lo que el gradiente debe corregirse:
∆𝑃𝑓𝑙𝑛 = [(𝑃𝑣𝑠1−𝑃 1 )−(𝑃𝑣𝑠2−𝑃 2 )] 𝑙𝑛(𝑃𝑣𝑠1−𝑃1𝑃𝑣𝑠2−𝑃2)
Y la ecuación queda:
𝑁´𝐴𝑔𝑢𝑎 = 𝑘𝑔∆𝑃𝑓𝑙𝑛 (4.10)
Con un balance de masa se puede calcular la cantidad de masa transferida, para lo que se necesita medir las temperaturas de bulbo húmedo y bulbo seco a la entrada y a la salida del aire, la temperatura de entrada y salida del agua, y los gastos volumétricos de agua y aire. Al agua evaporada y que se transfiere del seno del líquido al aire se le llama agua de reposición
MEDIDA DE LA HUMEDAD. La humedad de una corriente o masa de gas se puede obtener midiendo el punto de roció o la temperatura de bulbo húmedo, o bien por métodos directos en absorción. En este caso se determinara por método Psicométrico. Es un método muy empleado para medir la humedad, la cual se determina tomando como punto de partida la temperatura de bulbo húmedo y la humedad de saturación. A partir de este punto se traza una línea de saturación adiabática paralela a la más cercana trazada en el diagrama psicométrico (figura1). La humedad absoluta corresponde al punto de intersección de esta línea adiabática con la temperatura de bulbo seco.
Figura 4.1. Diagrama Psicrométrico a 613 mm Hg
La temperatura de termómetro húmedo es la temperatura de no equilibrio que para el estado estacionario alcanza una pequeña masa de líquido cuando se encuentra sumergido, en condiciones adiabáticas, en una corriente continua de gas. Un termómetro, o un dispositivo equivalente para la medida de la temperatura tal como un termopar, se recubre con una gasa saturada con un líquido puro y se sumerge en una corriente de gas de una temperatura T y una humedad H dadas. Para medir con precisión la temperatura del termómetro húmedo es preciso tomar tres precauciones:
a) Cálculo del flujo másico del agua mAgua, kg/s. mAgua = qAguaAgua
Donde, Agua, kg/m^3 Evaluadas a temperatura promedio del agua (tl1, tl2) qAgua, m^3 /s. Tendrán que hacer su conversión de l/min a m^3 /s
b) Cálculo de la velocidad másica del agua L, kg/m^2 s 𝑆 =
Donde, S Área de sección transversal de la columna, m^2 Di Diámetro interno de la columna, m.
c) Cálculo de flujo másico del aire mAire , kg/s
𝜌𝑎𝑖𝑟𝑒 =
(𝑃𝑀𝐴𝑖𝑟𝑒)(𝑃𝑎𝑡𝑚) 𝑅𝑇𝑆𝑚𝑒𝑑𝑖𝑎
mAire= qAire Aire Donde, Patm, atm R, atm/mol K TSmedia, ºK Temperatura promedio de bulbos secos PMAire, kg/kg-mol Aire, kg/m^3 qAire, Convertir de ft^3 /min a m^3 /s
𝐺 =
𝑚𝐴𝑖𝑟𝑒 𝑆 𝐺´ = 𝐺
1 1 − 𝑌 1 Donde, G Velocidad másica del aire húmedo, kg/m^2 s G’ Velocidad másica del aire seco, kg/m^2 s Y 1 Humedad del aire a la entrada. d) Cálculo del agua transferida al aire L’, kgvapor/m^2 s L’= G’(Y 2 -Y 1 ) Donde, Y 2 Humedad del aire a la salida.
e) Cálculo del área efectiva de transferencia de masa Ae, m^2
W = Di
𝛿 = (
3 𝜇𝐴𝑔𝑢𝑎𝑚𝐴𝑔𝑢𝑎 𝑔𝑊𝜌𝐴𝑔𝑢𝑎^2
)
1 / 3
Ae = (Di-2)h Donde, W Perímetro de la columna, m g Aceleración de la gravedad, m/s^2 Espesor de la película, m Agua kg/m s Evaluada a temperatura promedio del agua (tl1,tl2) Agua kg/m^3 h m
f) Calculando el número de moles de agua transferidos del aire NAgua, kmol/s
𝑁𝐴𝑔𝑢𝑎 =
𝐿´𝑆 𝑃𝑀𝐴𝑔𝑢𝑎
Donde, PMAgua kg/kg-mol
g) Cálculo del número de moles de agua transferidos al aire por unidad de área de transferencia de masa N’Agua kmol/m^2 s.
Ae
Agua Agua
h) Cálculo de la fuerza impulsora P f ln, mmHg. Tendrán que despejar para encontrar P1, P2, Pvs1 y Pvs
𝑌 1 = 𝑃 1 𝑃𝑎𝑡𝑚+𝑃 1 (
𝑃𝑀𝐴𝑔𝑢𝑎 𝑃𝑀𝐴𝑖𝑟𝑒^ )
𝑌 2 = 𝑃 2 𝑃𝑎𝑡𝑚+𝑃 2 (
𝑃𝑀𝐴𝑔𝑢𝑎 𝑃𝑀𝐴𝑖𝑟𝑒^ )
𝑌𝑆 1 =
𝑃𝑣𝑠 1 𝑃𝑎𝑡𝑚 + 𝑃𝑣𝑠 1
(
𝑃𝑀𝐴𝑔𝑢𝑎 𝑃𝑀𝐴𝑖𝑟𝑒
)
𝑌𝑆 1 =
𝑃𝑣𝑠 2 𝑃𝑎𝑡𝑚 + 𝑃𝑣𝑠 2
(
𝑃𝑀𝐴𝑔𝑢𝑎 𝑃𝑀𝐴𝑖𝑟𝑒
)
𝑣̅𝐴𝑖𝑟𝑒 =
𝑞 𝑆𝑒𝑓𝑒𝑐𝑡 𝑣̅𝐴𝑖𝑟𝑒 = 𝜀𝑣𝑠
𝑁𝑅𝑒 =
𝑣̅𝐴𝑖𝑟𝑒 𝜌𝐴𝑖𝑟𝑒𝐷𝑖𝑒𝑓 𝜇𝐴𝑖𝑟𝑒
𝑁𝑆ℎ =
𝑘𝑔𝑡𝑒𝑜𝐷𝑖𝑒𝑓∆𝑃𝑓𝑙𝑛 𝐶𝐷𝐴𝐵 Donde, Aire Viscosidad del aire, kg/m s Sefect Área de flujo efectiva para el aire, m^2 vAire Velocidad media del aire, m/s P f ln kg/m^2 DAB m^2 /s Vs Velocidad real, m/s ξ porosidad del empaque 0.75 adim. n. Comparación entre los coeficientes teórico y experimental
% 𝐸𝑟𝑟𝑜𝑟 = [ 𝑘𝑔𝑡𝑒𝑜−𝑘𝑔𝑒𝑥𝑝 𝑘𝑔𝑡𝑒𝑜^ ]
Los resultados obtenidos tendrán que ser subrayados para facilitar su identificación.