





























Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Varios problemas de programación lineal, que involucran la minimización o maximización de una función objetivo, sujetos a restricciones. Los problemas incluyen la determinación de los vértices de la zona de soluciones factibles, y los valores de la función objetivo en ellos, para alcanzar el mínimo o máximo. Los problemas se aplican a diferentes situaciones, como la producción de productos, la distribución de propaganda, la inversión en acciones, entre otros.
Tipo: Resúmenes
1 / 37
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:
Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles sería:
Siendo los vértices:
A intersección de r y t:
B intersección de s y t:
C intersección de r y s:
Siendo los valores de la función objetivo en ellos:
Alcanzándose el mínimo en el punto C.
PROBLEMA #2 Un herrero con 80 kgs. de acero y 120 kgs. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a 20.000 y 15.000 Bolívares cada una para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 kgs de aluminio, y para la de montaña 2 kgs. de ambos metales. ¿Cuántas bicicletas de paseo y de montaña venderá?
Sean las variables de decisión:
x= n: de bicicletas de paseo vendidas.
y= n: de bicicletas de montaña vendidas.
Tabla de material empleado:
Acero Aluminio
Paseo 1 3
Montaña 2 2
Función objetivo:
f(x, y)= 20.000x+15.000y máxima.
Restricciones:
PROBLEMA #3 Un autobús Caracas-Maracaibo ofrece plazas para fumadores al precio de 10.000 Bolívares y a no fumadores al precio de 6.000 Bolívares. Al no fumador se le deja llevar 50 kgs. de peso y al fumador 20 kgs. Si el autobús tiene 90 plazas y admite un equipaje de hasta 3.000 kg. ¿Cuál ha de ser la oferta de plazas de la compañía para cada tipo de pasajeros, con la finalidad de optimizara el beneficio?
Sean las variables de decisión:
x= n: de plazas de fumadores.
y= n: de plazas de no fumadores.
La Función objetivo:
Restricciones:
Zona de soluciones factibles:
Vértices:
A(0, 60)
B intersección de r y s:
Valores de la función objetivo:
Ha de vender 90 plazas para fumadores y ninguna para no fumadores y así obtener un beneficio máximo de 900.000 bolívares.
PROBLEMA #4 A una persona le tocan 10 millones de bolívares en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio del 10 %. Las de tipo B son más seguras, pero producen sólo el 7% anual. Después de varias deliberaciones decide invertir como máximo 6 millones en la compra de acciones A y por lo menos, 2 millones en la compra de acciones B. Además, decide que lo invertido en A sea, por lo menos, igual a lo invertido en B. ¿Cómo deberá invertir 10 millones para que le beneficio anual sea máximo?
Sean las variables de decisión:
B intersección de r,u:
C intersección de r,s:
D intersección de s,t:
La función objetivo toma en ellos los valores:
Siendo la solución óptima invertir 6 millones de bolívares en acciones tipo A y 4 millones en acciones tipo B
PROBLEMA #5 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs. por impreso. El estudiante lleva dos bolsas: una para los impresos A, en la que caben 120 y otra para los impresos B, en la que caben 100. Ha calculado que cada día es capaz de repartir 150 impresos como máximo. Lo que se pregunta el estudiante es: ¿Cuántos impresos habrá que repartir de cada clase para que su beneficio diario sea máximo?
Sean las variables de decisión:
x= n: de impresos diarios tipo A repartidos.
y= n: de impresos diarios tipo B repartidos.
La función objetivo es:
Las restricciones:
La zona de soluciones factibles es:
Vértices:
A(0, 100)
B intersección de s,t:
C intersección de r,t:
Y los vértices:
A(0, 625)
B intersección de r,s:
Y en ellos la función objetivo toma los valores:
Ha de comprar 200 kgs. de naranjas A y 500 kgs. de naranjas B para obtener un beneficio máximo de 6.600 bolívares
PROBLEMA #7 Un sastre tiene 80 m^2 de tela de algodón y 120 m^2 de tela de lana. Un traje requiere 1 m^2 de algodón y 3 m^2 de lana, y un vestido de mujer requiere 2 m^2 de cada una de las dos telas. Calcular el número de trajes y vestidos que debe confeccionar el sastre para maximizar los beneficios si un traje y un vestido se venden al mismo precio.
x= número de trajes.
y= número de vestidos
a= precio común del traje y el vestido.
Función objetivo:
Restricciones:
Zona de soluciones factibles:
Vértices:
A(0, 40)
B intersección de r y s:
La zona de soluciones factibles queda, pues:
Siendo los vértices:
A intersección de r,s:
B intersección de r,t:
Y la función objetivo toma los valores:
Teniendo que vender 40 viviendas tipo A y 10 tipo B para obtener un beneficio máximo de 130 millones de bolívares.
PROBLEMA #9 Cierta persona dispone de 10 millones como máximo para repartir entre dos tipos de inversión (A y B). En la opción A desea invertir
entre 2 y 7 millones. Además, quiere destinar a esa opción, como mínimo, tanta cantidad de dinero como a la B.
a. ¿Qué cantidades debe invertir en cada una de las dos opciones? Plantear el problema y representar gráficamente el conjunto de soluciones. b. Sabiendo que el rendimiento de la inversión será del 9 % en la opción A y del 12 % en la B, ¿Qué cantidad debe invertir en cada una para optimizar el rendimiento global? ?A cuánto ascenderá
a) Sean las variables de decisión:
x= cantidad invertida en acciones tipo A
y= cantidad invertida en acciones tipo B
Las restricciones son:
Puede invertir en cada una de las dos opciones las cantidades correspondientes a cada uno de los puntos de la zona sombreada de la siguiente gráfica:
turbinas (T), mientras que con cada barril de crudo pesado produce 0,3 barriles de G, 0,4 barriles de C y 0,2 barriles de T. La refinería ha contratado el suministro de 900000 barriles de G, 800000 barriles de C y 500000 barriles de T. Hallar las cantidades de crudo ligero y pesado que debe comprar para poder cubrir sus necesidades al costo mínimo.
Sean las variables de decisión:
X= número de barriles comprados de crudo ligero.
Y= número de barriles comprados de crudo pesado.
La tabla de producción de cada producto con arreglo al tipo de crudo es:
Ligero 0,3 0,2 0,
Pesado 0,3 0,4 0,
La función objetivo que hay que minimizar es:
f(x, y)=35x+30y
Las restricciones:
Y la zona de soluciones factibles:
Los vértices son:
A(0, 3000000)
B intersección de r,s:
Y en ellos la función objetivo presenta los valores:
Siendo la solución de mínimo coste la compra de 3.000.000 de barriles de crudo ligero y ninguno de crudo pesado para un coste de 90.000.000 dólares.
PROBLEMA #11 La fábrica LA MUNDIAL S.A., construye mesas y sillas de madera. El precio de venta al público de una mesa es de 2.700 Bs. y el de una silla 2.100Bs. LA MUNDIAL S.A. estima que fabricar una mesa supone un gasto de 1.000 Bs. de materias primas y de 1.400 Bs. de costos laborales. Fabricar una silla exige 900 Bs. de materias primas y 1.000 Bs de costos laborales. La construcción de ambos tipos de muebles requiere un trabajo previo de carpintería
La zona de soluciones factibles es:
Siendo los vértices:
A (0, 80)
B intersección de r,s:
C intersección de s,t:
En los que la función objetivo vale:
Debiendo fabricar 20 mesas y 60 sillas para un beneficio máximo de 18.000 Bs.
PROBLEMA #12 Una campaña para promocionar una marca de productos lácteos se basa en el reparto gratuito de yogures con sabor a limón o a fresa. Se decide repartir al menos 30.000 yogures. Cada yogurt de limón necesita para su elaboración 0,5 gr. de un producto de fermentación y cada yogurt de fresa necesita 0,2 gr. de ese mismo producto. Se dispone de 9 kgs. de ese producto para fermentación. El coste de producción de un yogurt de fresa es es doble que el de un yogurt de limón. ¿Cuántos yogures de cada tipo se deben producir para que el costo de la campaña sea mínimo?
Sean las variables de decisión:
x= número de yogures de limón producidos.
y= número de yogures de fresa producidos.
a= coste de producción de un yogurt de limón.
La función a minimizar es:
f(x, y)=ax+2ay
Y las restricciones: