Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Física Clásica: Ramas y Conceptos Básicos de Dinámica, Guías, Proyectos, Investigaciones de Ciencias de la Actividad Física y del Deporte

Una introducción a las ramas de la Física Clásica, con énfasis en la Dinámica. Se abordan conceptos básicos como medición y unidades físicas, sistemas de medición, masa y fuerza, y las tres leyes de Newton. Se incluyen ejemplos y definiciones de unidades básicas.

Tipo: Guías, Proyectos, Investigaciones

2020/2021

Subido el 09/08/2021

ricardo-gonzalez-vazquez-1
ricardo-gonzalez-vazquez-1 🇲🇽

3 documentos

1 / 10

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
LA CIENCIA DEL MOVIMIENTO
GUÍA PARA EXAMEN DE RECUPERACIÓN
MEC . María Dolores Montema yor Ló pez
INTRODUCCIÓN A LA FÍSICA
FÍSICA: Ciencia que estudia la Materia, la Energía , el Espacio y el tiempo y sus interacciones.
Importancia de su estudio:
Influye en los avances tecnológicos que proporcionan bienestar social, tanto
en salud, comunicaciones, transportes, etc.
LA FÍSICA Y SUS RAMAS
FÍSICA CLÁSICA Se le llama así a los estudios realizados hasta finales del siglo XIX sobre
el movimiento, el calor, la electricidad y el magnetismo, el sonido y la luz.
RAMAS DE LA FÍSICA CLÁSICA: Campo de estudio:
Mecánica
Energía debido al movimiento o posición de los cuerpos.
Termodinámica Energía calorífica o "Calor".
Electricidad y Magnetismo Energía eléctrica y propiedad de los imanes.
Acústica Energía sonora "Sonido".
Óptica Energía luminosa "Luz".
FÍSICA MODERNA Estudios de esta ciencia a partir del el siglo XIX en adelante.
RAMAS DE LA FÍSICA MODERNA: Campo de estudio:
Relatividad El movimiento a velocidades cercanas a la velocidad de la luz.
Física Cuántica El movimiento de partículas como ondas y viceversa (ondas como partículas)
Física Atómica La energía del átomo, su composición y propiedades.
Física Nuclear La energía de núcleos atómicos, sus componentes y fuerzas involucradas.
Física de las partículas Estudia la clasificación de todas las partículas que componen la materia.
Física del Plasma
Estudio del plasma (gas ionizado) como un estado de la materia de gran energía.
ANTECEDENTES HISTÓRI COS DE LA FÍSICA
PERÍODO ANTIGUO:
( Siglo III a.c.) Se basaba en una idea de orden en base a la observación.
(Aristotélico)
Se creía en un Modelo Geocéntrico del universo propuesto por Aristóteles,
PERÍODO CLÁSICO:
( Siglo XVII ) Surge la idea de causa y efecto, la experimentación, método
(Newtoniano) científico, lenguaje matemático, mediciones directas. Personajes:
Galileo: Se considera el padre de l método científico experimental .
J. Kepler: Propuso el modelo elíptico en el que las órbitas de los planetas
alrededor del sol eran elípticas y que el sol se ubicaba en uno de los focos
o extremos de la elipse.
I. New ton: Publicó Los Principios Matemáticos de la Filosofía Natural. Sentó
las bases de la Mecánica Clásica pues póstuló las Leyes que rigen la misma,
así como la Ley de la Gravitación Universal.
PERÍODO MODERNO:
(Siglo XIX en adelante) Se basa en una idea probabilística en la que NO se
hacen mediciones directas. Inicia con A. Einstein quien postuló La Teoría de
la Relatividad donde se relaciona por primera vez los conceptos de masa y
energía, tiempo y espacio.
ETAPA 1: FÍSICA: LA CIENCIA DE LAS MEDICIONES
pf3
pf4
pf5
pf8
pf9
pfa

Vista previa parcial del texto

¡Descarga Física Clásica: Ramas y Conceptos Básicos de Dinámica y más Guías, Proyectos, Investigaciones en PDF de Ciencias de la Actividad Física y del Deporte solo en Docsity!

LA CIENCIA DEL MOVIMIENTO

GUÍA PARA EXAMEN DE RECUPERACIÓN

MEC. María Dolores Montemayor López

INTRODUCCIÓN A LA FÍSICA

FÍSICA: Ciencia que estudia la Materia, la Energía, el Espacio y el tiempo y sus interacciones.

Importancia de su estudio: Influye en los avances tecnológicos que proporcionan bienestar social, tanto en salud, comunicaciones, transportes, etc.

LA FÍSICA Y SUS RAMAS

FÍSICA CLÁSICA Se le llama así a los estudios realizados hasta finales del siglo XIX sobre el movimiento, el calor, la electricidad y el magnetismo, el sonido y la luz. RAMAS DE LA FÍSICA CLÁSICA: Campo de estudio: Mecánica Energía debido al movimiento o posición de los cuerpos. Termodinámica Energía calorífica o "Calor". Electricidad y Magnetismo Energía eléctrica y propiedad de los imanes. Acústica Energía sonora "Sonido". Óptica Energía luminosa "Luz". FÍSICA MODERNA Estudios de esta ciencia a partir del el siglo XIX en adelante. RAMAS DE LA FÍSICA MODERNA: Campo de estudio: Relatividad El movimiento a velocidades cercanas a la velocidad de la luz. Física Cuántica El movimiento de partículas como ondas y viceversa (ondas como partículas) Física Atómica La energía del átomo, su composición y propiedades. Física Nuclear La energía de núcleos atómicos, sus componentes y fuerzas involucradas. Física de las partículas Estudia la clasificación de todas las partículas que componen la materia. Física del Plasma Estudio del plasma (gas ionizado) como un estado de la materia de gran energía.

ANTECEDENTES HISTÓRICOS DE LA FÍSICA

PERÍODO ANTIGUO: ( Siglo III a.c.) Se basaba en una idea de orden en base a la observación. (Aristotélico) Se creía en un Modelo Geocéntrico del universo propuesto por Aristóteles, PERÍODO CLÁSICO: ( Siglo XVII ) Surge la idea de causa y efecto, la experimentación, método (Newtoniano) científico, lenguaje matemático, mediciones directas. Personajes: Galileo: Se considera el padre del método científico experimental. J. Kepler: Propuso el modelo elíptico en el que las órbitas de los planetas alrededor del sol eran elípticas y que el sol se ubicaba en uno de los focos o extremos de la elipse. I. Newton: Publicó Los Principios Matemáticos de la Filosofía Natural. Sentó las bases de la Mecánica Clásica pues póstuló las Leyes que rigen la misma, así como la Ley de la Gravitación Universal. PERÍODO MODERNO: (Siglo XIX en adelante) Se basa en una idea probabilística en la que NO se hacen mediciones directas. Inicia con A. Einstein quien postuló La Teoría de la Relatividad donde se relaciona por primera vez los conceptos de masa y energía, tiempo y espacio.

ETAPA 1: FÍSICA: LA CIENCIA DE LAS MEDICIONES

MEDICIÓN Y CANTIDADES FÍSICAS

SISTEMAS DE MEDICIÓN: Conjunto de unidades que se utilizan para hacer mediciones. Ejemplos: Sistema CGS (o sistema cegesimal) , Sistema Inglés y S. I. SISTEMA INTERNACIONAL (S.I.) Antes sistema métrico decimal, es el que se utiliza en México y otros países. algunas de sus unidades fundamentales son: el metro, el Kilogramo y el segundo. MEDICIÓN: Comparación con una unidad establecida asignando un valor numérico. MAGNITUD FÍSICA: Propiedad medible característica de un cuerpo. ej. Longitud, masa, tiempo etc. CANTIDAD FÍSICA: La que resulta de una medición y consta de un número y una unidad: ej. 20 Kg, 12 seg, 7 metros, etc. UNIDAD O PATRÓN: Valor conocido y perfectamente definido, usado como referencia al hacer mediciones, ejemplos: Kg, segundo, metro, radián….etc. TIPOS DE UNIDADES: FUNDAMENTALES Y DERIVADAS Fundamentales: Las que NO se definen en función de otras unidades; ejemplos: metro, Kg, segundo, Amper, Kelvin, candela...etc. Derivadas: Las que se obtienen a partir de las fundamentales; ejemplos: m/s, m/s^2 , m^2 , m^3 , Newton, Joules, watts...etc. EQUIVALENCIA: Cantidad física expresada en dos o mas unidades diferentes, ejemplos: 1 metro = 100cm = 1000mm , 1Kg = 1000 g , 1 hora = 3600 segundos FACTOR DE CONVERSIÓN: Se forman a partir de una equivalencia dividiendo ambos lados por el término contrario; ejemplos: 1 m = 100 cm entonces (1m / 100cm) = (100cm / 1m) = 1 CONVERSIÓN DE UNIDADES: Conjunto de operaciones que permiten transformar una misma medición en otras unidades de su misma especie. Ejemplos de conversiones por el método de "cancelación" (utiliza factores de conversión para "cancelar" la unidad no deseada) Convertir 0.8 Kg en gramos: 0.8 Kg ( 1000 g / 1 Kg ) = 0.8 x 1000 / 1 = 800 g Convertir 1800 segundos en horas: 1800 seg ( 1 h / 3600 seg ) = 1800 x 1/ 3600 = 0.5 h DEFINICIÓN Y EQUIVALENCIAS DE ALGUNAS MAGNITUDES FÍSICAS FUNDAMENTALES Y DERIVADAS: LONGITUD: Segmento de recta que une dos puntos fijos. 1m = 10dm = 100cm = 1000mm 1 Km = 1000m TIEMPO: Intervalo que ocurre entre dos sucesos determinados. 1 hora = 60min = 3600s MASA: Medida de la inercia de los cuerpos. 1 Kg = 1000g , 1 Ton = 1000 Kg ÁREA: Medida bidimensional (en dos dimensiones). 1m^2 = 10,000cm^2 1 hectárea = 10,000 m^2 VOLUMEN: Espacio tridemsional que ocupa en cuerpo (en tres dimensiones) 1 m^3 = 1,000,000cm^3 1m^3 = 1000 litros 1 litro = 1 dm^3 = 1000 ml 1ml = 1cm^3

LA CIENCIA DEL MOVIMIENTO

ETAPA 2: CINEMÁTICA Y LAS LEYES DEL MOVIMIENTO

2.1 Conceptos básicos de Cinemática

Movimiento Cambio de posición en el espacio a través del tiempo Mecánica Rama de la Física que estudia el movimiento en general Cinemática Parte de la Mecánica que estudia los tipos de movimiento, su representación matemática y gráfica Dinámica Parte de la Mecánica que analiza las causas que producen el movimiento y sus cambios. Sistema de referencia Punto o cuerpo a partir del cual se determina y analiza el movimiento Modelo de partícula Cuando se considera toda la masa de un cuerpo en movimiento concentrada en un punto Traslación Tipo de movimiento que se describe cuando todas las partes de un cuerpo en movimiento describen las mismas trayectorias Trayectoria Conjunto de puntos en el espacio que describe un cuerpo al cambiar de posición Longitud y unidades Separación que existe entre dos puntos en el espacio. Sus unidades en el SI. son metros Distancia Longitud real de una trayectoria. Es de tipo escalar y sus unidades pueden ser: metros, cm, Km, pie, yarda, milla, etc. Desplazamiento Distancia en línea recta desde el punto inicial al punto final en una dirección determinada. Es de tipo vectorial y sus unidades son igual que las de la distancia. Rapidez Distancia recorrida por unidad de tiempo, es de tipo escalar y sus unidades pueden se: m/s, Km/h , millas/h. Velocidad Desplazamiento de un cuerpo por cada unidad de tiempo, es de tipo vectorial y sus unidades son igual que las de la rapidez. Rapidez media Relación que existe entre la distancia total recorrida por un cuerpo y el tiempo total transcurrido Velocidad media Relación que existe entre el desplazamiento total recorrido por un cuerpo y el tiempo total transcurrido Rapidez y velocidad instantáneas La que se mide en un instante o punto determinado de la trayectoria, para un intervalo de tiempo tan pequeño que tiende a cero. Velocidad Uniforme: Cuando se recorren distancias iguales en tiempos iguales (sin aceleración) Aceleración Cambio en la rapidez o la velocidad de un cuerpo. Razón del cambio de velocidad por unidad de tiempo.. Es vectorial y sus unidades en el SI. son m/s 2 aceleración positiva Si la velocidad final es mayor que la inicial aceleración negativa Si la velocidad final es menor que la inicial (movimiento retardado) aceleración cero Si la velocidad final es igual a inicial (sin cambio en la velocidad) Movimiento en una dimensión Movimiento rectilíneo (con trayectoria en un solo eje) (Es Uniforme si la velocidad y rapidez son costantes o es Uniformemente acelerado si la aceleración es contante) Casos a analizar desde el origen (X = 0 ) (t = 0), a partir del reposo (Vo = 0 ) o en movimiento (Vo > 0), con Velocidad constante (a = 0) o con aceleración constante ( a > 0 ) Modelos Matemáticos: V - Vo

t - to

a =

t

V = X^ a =^ DV /^ Dt

2.2 Conceptos básicos de Dinámica FUERZA: Todo aquello capaz de provocar un cambio en el estado de reposo o movimiento de un cuerpo (o de deformarlo) Sus Unidades en el S.I. son los Newton (en honor a Isaac Newton) Las Unidades fundamentales para medir las fuerzas son: Kg m/s^2 (esto se interpreta como que 1 Newton es la fuerza capaz de cambiar el estado de reposo o movimiento de un cuerpo cuya masa es de 1 Kg y acelerarlo a 1 m/s^2 ). 1 N = 1 Kg m/s^2 (Las “Dinas” también son unidades de fuerza: 1 Dina = 1 g cm/s^2 y 1 N = 100 000 Dinas) ESTADO DE EQUILIBRIO: Equilibrio Estático: cuando una fuerza provoca que un objeto esté en reposo. Equilibrio Cinético: cuando una fuerza provoca que un objeto se mueva con Velocidad constante, o sea, sin acelerar. “Cuando una fuerza provoca que un objeto tenga aceleración se dice que el objeto NO ESTÁ EQUILIBRADO”. Masa e Inercia Se define masa como la medida de la Inercia de los cuerpos. Pero…. ¿Qué es la Inercia? La Inercia es la propiedad que tiene toda la materia de oponerse a un cambio en su estado natural de reposo o de movimiento. De tal forma que: “A mayor masa, mayor Inercia y viceversa”. La masa es una cantidad física de tipo escalar y sus Unidades pueden ser: g, Kg, Ton, Libras, onzas. etc. Aclaración importante: masa y peso NO SON LO MISMO PESO: Es la Fuerza con la que el planeta Tierra (u otro cuerpo celeste) atrae a los objetos hacia su superficie debido a la aceleración de la gravedad. Como el peso es una fuerza, sus Unidades son Newton

ETAPA 3 LEYES, PRINCIPIOS Y CONCEPTOS RELACIONADOS CON EL MOVIMIENTO Leyes de Kepler: Describen el movimiento de los planetas solo de forma Cinemática. 1ª. Todos los planetas giran en órbitas elípticas con el Sol en uno de los focos de la elipse. 2ª. Todos los planetas al girar alrededor del Sl cubren áreas iguales en tiempos iguales. 3ª. El cuadrado de los períodos de los planetas alrededor del Sol es directamente proporcional al cubo de sus distancias promedio al Sol. Ley de la Gravitación Universal: Dos masas cualesquiera se atraen entre sí con una fuerza que es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa. Deducciones: si las masas aumentan la fuerza aumenta en la misma proporción, si la distancia aumenta la fuerza disminuye con el cuadrado de la proporción. Algunas aplicaciones de la ley de la gravitación: Cálculo de fuerza, de masas o distancia entre ellas. Calculo de peso o gravedad en cuerpos como planetas: La gravedad de un planeta depende de su masa y su radio”. Rapidez y período orbital de satélites: A mayor altura del satélite menor será su rapidez orbital y mayor su período.

CONCEPTOS RELACIONADOS CON EL MOVIMIENTO CINEMÁTICO:

Trabajo: Producto de la fuerza por el desplazamiento provocado en su misma dirección. W = F (cos  ). d W = m. g. y Potencia: Rapidez con la que se realiza un trabajo o Trabajo realizado por unidad de tiempo. P = W / t P = F. V Energía: Capacidad de un cuerpo para realizar un trabajo. Algunos tipos de energía: Mecánica, calorífica, eléctrica, sonora, luminosa, eólica, solar, etc. Ley de la Conservación de la Energía: La energía no se crea ni se destruye solo se transforma. Teorema del Trabajo y la Energía: El Trabajo realizado por un cuerpo equivale al cambio en su energía. Energía Mecánica: La que tiene un cuerpo debido a su posición o altura. Se calcula con la suma de la energía cinética y potencial de un cuerpo. EM = K + U Energía Cinética: La que tiene un cuerpo debido a su movimiento o velocidad. K = ½ m V^2 Energía Potencial: La que tiene un cuerpo debido a su posición o altura: U = m. g. y

Etapa 4 Las máquinas: una aplicación de los principios y leyes del movimiento Máquina simple: Dispositivo mecánico que cambia la dirección o la magnitud de una fuerza. Las máquinas

simples también se pueden definir como los mecanismos más sencillos que utilizan una ventaja mecánica para

incrementar una fuerza.

Las seis máquinas simples clásicas que fueron clasificadas y estudiadas por los científicos del Renacimiento son:

Palanca, Plano inclinado, Polea, Torno, (Cuña, y Tornillo)*.

*Algunos autores consideran a la cuña y al tornillo como aplicaciones del plano inclinado. DESCRIPCIONES:

 La Palanca: Barra rígida que puede girar libremente alrededor de un punto de apoyo, llamado fulcro. Su función

es transmitir fuerza y desplazamiento. En ella se cumple la conservación de la energía ya que la fuerza aplicada

por su espacio recorrido es igual a la fuerza de resistencia por su espacio recorrido.

 El Plano inclinado: Es una superficie plana que forma un ángulo agudo con el suelo y se utiliza para elevar

cuerpos a cierta altura. Dado el principio de conservación de la energía, cuanto más pequeño sea el ángulo del

plano inclinado, más peso se podrá elevar con la misma fuerza aplicada, pero a cambio, la distancia a recorrer

será mayor.

 La Polea: Dispositivo mecánico de tracción que consiste en una rueda con un canal en su periferia, por el cual

pasa una cuerda que gira sobre un eje central. Sirve para transmitir fuerza en dirección diferente a la aplicada

y en conjuntos (aparejos o polipastos) reduce la magnitud de la fuerza para mover un peso.

 El Torno: El más sencillo, es un cilindro que rota mediante manivela, en el que se enrolla una cuerda y sirve

para subir verticalmente grandes pesos y en conjunto de máquinas y herramientas permiten mecanizar, roscar,

cortar, trapeciar, agujerear, cilindrar, desbastar y ranurar piezas de forma geométrica por revolución.

 La Cuña: Consiste en una pieza de madera o de metal con forma de prisma triangular. Transforma una fuerza

vertical en dos fuerzas horizontales de sentido contrario. El ángulo de la cuña determina la proporción entre la

fuerza aplicada y la resultante, técnicamente es un doble plano inclinado portátil. Sirve para hender o dividir

cuerpos sólidos, para ajustar o apretar uno con otro, para calzarlos o para llenar alguna raja o círculo.

 El Tornillo: Es una caña con rosca triangular, que, mediante una fuerza de torsión ejercida en su cabeza con

una llave adecuada o un destornillador, se puede introducir en un agujero roscado a su medida o atravesar

piezas y acoplarse a una tuerca. Se utiliza en la fijación temporal de piezas entre sí. La relación entre la fuerza

aplicada y obtenida es muy grande.

Las seis máquinas simples clásicas: Palanca: Torno: Polea: Plano inclinado: Cuña: Tornillo:

APLICACIONES:

PALANCA: Máquina simple cuya función es transmitir o amplificar fuerza, incrementar velocidad y variar

desplazamiento. Su uso involucra siempre un movimiento rotatorio que se denomina “torque”.

Elementos básicos de una palanca POTENCIA (P): fuerza que se aplica en la palanca para vencer a la resistencia. RESISTENCIA (R): fuerza que se quiere vencer o compensar. FULCRO: punto de apoyo sobre el que gira libremente la palanca. BRAZO DE POTENCIA (BP): distancia que existe desde el punto donde se aplica la potencia al fulcro. BRAZO DE RESISTENCIA (BR): distancia desde el punto donde se encuentra la resistencia al fulcro.

Tipos de Palancas: Las palancas se dividen en tres tipos, clases o géneros, dependiendo de la posición relativa

del fulcro (punto de apoyo) y los puntos de aplicación de las fuerzas: potencia y resistencia. El principio de la palanca

es válido indistintamente del tipo, pero el efecto y forma de uso de cada tipo de palanca cambia considerablemente.

Primer Género: Invierte el sentido del movimiento.

Se caracteriza por tener el fulcro entre la potencia (fuerza aplicar) y la

resistencia (fuerza a vencer) y si el BP mayor que el BR menor velocidad

y si BP menor que el BR sería mayor velocidad. Ejemplos: Tijeras,

tenazas, balanza, catapulta o el conjunto “tríceps-codo-antebrazo”,

carretilla de dos ruedas.

Segundo Género: Para ganancia Mecánica

Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la

fuerza a aplicar (la Resistencia se encuentra entre la Potencia y el fulcro) y

la Potencia siempre es menor que la Resistencia, a costa de disminuir la

velocidad o distancia recorrida. Ejemplos: Carretillas de una rueda,

destapador de botellas, remos, cascanueces, frenos de bicicletas.

Tercer Género: Para ampliar velocidad.

Se caracteriza por ejercerse la fuerza "a aplicar" entre el fulcro y la fuerza

a vencer (Potencia entre el fulcro y la Resistencia). Se utilizan para

aumentarla velocidad transmitida o distancia a recorrer y en ellas el fulcro

debe estar más cerca de la Potencia, significa que el BP es menor que BR.

Ejemplos: Grapadora, Martillo, pinzas, caña de pescar.

Palancas múltiples: Varias palancas combinadas.

Ejemplos: Corta-uñas, máquina retroexcavadora (con movimientos

giratorios, de ascenso y descenso y de avanzar o retroceder).

MDML/mayo/ RECUERDA PRACTICAR EJERCICIOS DE APLICACIÓN DE CADA ETAPA