Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Mathematical Solution to Differential Equations for Biotech Engineering Students, Guías, Proyectos, Investigaciones de Matemáticas

The solution to a first-order differential equation given by the equation dy/dx + 2y = x^2e^x. the steps to find the integrating factor, the general solution, and the family of functions using GeoGebra. from a Mathematics for Engineering II course for Biotechnology Engineering students taught by Elías Flores Cruz.

Tipo: Guías, Proyectos, Investigaciones

2020/2021

Subido el 24/10/2021

jesus-sebastian-saavedra-guevara
jesus-sebastian-saavedra-guevara 🇲🇽

1 documento

1 / 5

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
1
Homework103
Integrating factor
Mathematics for Engineering II
6°A Biotechnology Engineering
Teacher
Elías Flores Cruz
Student
Jesús Sebastián Saavedra Guevara.
Date
October 12th, 2021
pf3
pf4
pf5

Vista previa parcial del texto

¡Descarga Mathematical Solution to Differential Equations for Biotech Engineering Students y más Guías, Proyectos, Investigaciones en PDF de Matemáticas solo en Docsity!

Homework

Integrating factor

Mathematics for Engineering II

6°A Biotechnology Engineering

Teacher

Elías Flores Cruz

Student

Jesús Sebastián Saavedra Guevara.

Date

October 12th, 2021

Chapter I. Analysis: Math solution by integrating factor, directional field, and its family of function. 𝑑𝑦 𝑑𝑥

− 2 𝑦 = 𝑥^2 𝑒^2 𝑥

ABC plan:

  1. To analyze the elements that the exercise provides.
  2. To analyze the elements necessary to solve the exercise.
  3. To solve the differential equation by integrating factor.
  4. To get the family of functions and directional field by GeoGebra
  5. To contextualize the result.

we obtain:

5. To contextualize the result. We note this each family of solution´s member has characteristics which that it is dependent of the constant value “C”.

Chapter III Conclusions. ▪ It was found that, the family solution of this differential equation is: y =

x^3 e2x^ + Ce2x^ , ▪ To solve this exercise, we have to do is analyze and solve the differential equation, find the general solution and check the result in GeoGebra. Chapter IV Bibliography. [1] Flores Cruz E., “Class of mathematics for engineering II, 23 - 09 - 21”. (UPMP, Puebla 2021). [2] Rojas Hernandez J., “Class of mathematics for engineering II, 24- 09 - 21”. (UPMP, Puebla 2021). [3] Sanchez Guzman X., “Class of mathematics for engineering II, 24- 09 - 21”. (UPMP, Puebla 2021). [4] Saavedra Guevara S., “Class of mathematics for engineering II, 11 - 10 - 21”. (UPMP, Puebla 2021).