






Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Una guía práctica para estudiantes de medicina sobre la evaluación de la presión arterial. Incluye información sobre los conceptos básicos de la presión arterial, la técnica de medición, y ejercicios prácticos para analizar los cambios en la presión arterial en respuesta a diferentes maniobras. Útil para comprender la fisiología cardiovascular y la importancia de la presión arterial en la salud.
Tipo: Guías, Proyectos, Investigaciones
1 / 12
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
El estudiante analiza los factores físicos y tisulares que influyen en la hemodinamia.
El estudiante: ● Explica las diferentes respuestas a la interrupción del flujo sanguíneo arterial y venoso. ● Explica los conceptos de presión de pulso y presión arterial media. ● Diferencia la hiperemia activa y reactiva.
1. Introducción La hemodinamia es la parte de la biofísica que se encarga del estudio del flujo de la sangre a través de todo el sistema circulatorio. Es necesario regular y mantener constante este flujo sanguíneo en valores normales, para así preservar un entorno apropiado en los líquidos tisulares y como consecuencia todas las células puedan desempeñar su función adecuadamente. Es importante recordar cómo está compuesto el sistema circulatorio: Las arterias son los vasos de mayor calibre y son las encargadas de transportar la sangre a presiones muy altas. Posteriormente, después de numerosas ramificaciones, las arterias van disminuyendo su diámetro hasta convertirse en arteriolas, que son las últimas ramas pequeñas del sistema arterial. Las arteriolas tienen la capacidad de regular el flujo de sangre hacia los diferentes órganos gracias a sus paredes vasculares de gran fuerza. Estas paredes, según la necesidad del organismo, tienen la capacidad de contraerse y disminuir el diámetro del vaso, o de dilatarse y aumentarlo, afectando de gran manera el flujo sanguíneo. Al finalizar el trayecto arterial se encuentran los capilares, los cuales tienen como función intercambiar, desde el espacio intravascular hacia el espacio intersticial, nutrientes, electrolitos, líquidos, hormonas entre otras moléculas, necesarias para el adecuado funcionamiento de todas las células que integran el cuerpo humano. Las vénulas recogen la sangre después de su paso por el intersticio, acompañada de productos de desecho y con valores de oxígeno mucho menores al del sistema arterial. A medida que van aumentando de calibre estos vasos, pasan de ser vénulas a venas, que además de funcionar como camino de regreso al corazón para iniciar el proceso nuevamente, también sirven como un gran reservorio de sangre. Mientras en el corazón, las arterias y los capilares se posee aproximadamente un 7, 13 y 7 % del volumen sanguíneo total, respectivamente, el sistema venoso posee cerca de un 64%. Así el organismo puede regular y controlar la cantidad de sangre circulante según sus necesidades.
El flujo de la sangre a través del sistema cardiovascular es posible gracias a la diferencia de presiones que existe entre el punto inicial del circuito y el punto final. La presión sanguínea va disminuyendo paulatinamente a medida aumenta la distancia recorrida a partir del ventrículo, independientemente si se habla del lado izquierdo o del derecho (Figura 1). Por lo tanto, la sangre fluye unidireccionalmente desde los sitios con mayor presión, localizados en vasos sanguíneos cercanos al corazón, hacia sitios con una menor presión sanguínea, es decir, los más alejados. Figura 1. La presión sanguínea disminuye conforme aumenta la distancia desde el ventrículo. Esta diferencia de presiones necesaria para el flujo de sangre a través de la circulación, se origina con la contracción de los ventrículos en la denominada sístole ventricular. En este proceso es necesario vencer la presión aórtica, que, en una persona sin enfermedades, normalmente ronda los 100 mmHg. Debido a que el bombeo cardíaco es un fenómeno pulsátil, dicha presión aórtica alterna entre valores sistólicos de 120 mmHg y diastólicos de 80 mmHg en condiciones basales de reposo. La diferencia entre estos dos valores corresponde a la presión de pulso, cuyos valores son directamente proporcionales al volumen expulsado del ventrículo en cada latido (volumen latido) e inversamente proporcionales a la distensibilidad arterial. Las arterias tienen un papel fundamental al generar un flujo sanguíneo constante. La gran elasticidad arterial juega un papel fundamental para hacer posible mantener en valores altos la presión generada originalmente en el corazón, a pesar de que la presión dentro del ventrículo haya descendido a casi cero. La presión arterial media (PAM) es definida como el promedio de la presión en las arterias durante un ciclo cardíaco. Este parámetro refleja la perfusión constante que reciben los diferentes órganos para su correcto funcionamiento. Valores de PAM mayores a 60 mmHg son suficientes para mantener los órganos de una persona promedio correctamente irrigados y perfundidos. Si la PAM desciende a valores inferiores por un tiempo considerable, los órganos no recibirán el suficiente riego sanguíneo y pueden sufrir isquemia e inclusive necrosis, desarrollando un daño irreversible. La presión arterial media (PAM) está determinada por el gasto cardiaco (GC), la resistencia vascular periférica (RVP) y la presión venosa central (PVC). La fórmula que integra estos conceptos es: PAM = (GC x RVP) + PVC
El procedimiento para la toma de la presión arterial se fundamenta en la auscultación de sonidos llamados “ruidos de Korotkoff”, descritos en 1905. Dichos hallazgos se generan en las arterias periféricas cuando se modifica el flujo de la sangre.^1 Cuando el brazalete alrededor del brazo se infla con una presión mayor a la presión sistólica no es posible escuchar ningún sonido, debido a que se ocluye la arteria y se interrumpe el flujo. A medida que va disminuyendo la presión y se permite gradualmente un mayor paso de sangre a través de la zona de oclusión pueden escucharse diferentes ruidos, integrando las siguientes fases (figura 3) :
sangre comienza a formar “remolinos” y a generar ruidos que se pueden percibir con ayuda del estetoscopio. Figura 4. Flujos laminar y turbulento El número de Reynolds se usa para predecir si el flujo de la sangre será laminar o turbulento. La fórmula para calcularlo considera factores determinantes del fluido: velocidad de flujo, viscosidad del fluido y densidad de la sangre; así como del tubo por el que fluye: diámetro. La fórmula se describe a continuación: N = (dρv) /η Donde: N = Número de Reynolds; d = diámetro del tubo; ρ = densidad del fluido; v = velocidad de flujo del fluido; η= viscosidad del fluido. Si el número de Reynolds calculado con la fórmula anterior es bajo, se interpretará como un flujo laminar. Si el valor es alto, será un flujo turbulento. En el sistema cardiovascular las principales causas de un flujo turbulento son el aumento en la velocidad de flujo (v) o la disminución de la viscosidad (η). Cuando se aumenta la presión en el brazalete del esfigmomanómetro el diámetro del vaso (d) disminuye, por lo que, siguiendo la fórmula, debería reducirse el número de Reynolds. Esto no ocurre de esta manera debido a que la velocidad (v) es igual al flujo (Q) que pasa por un área (πr^2 ) determinada, en otras palabras, la velocidad (v) es directamente proporcional al flujo (Q), e inversamente proporcional al área (πr^2 ). Lo anterior se resume en la fórmula siguiente:
La presión arterial es regulada autónomamente por el sistema nervioso. Los barorreceptores sensan los cambios de presión en el interior del seno carotídeo y el arco aórtico, posteriormente se envían aferencias a los centros vasomotores en el tronco encefálico por medio del nervio del seno carotídeo. Los receptores en el arco aórtico envían su información a través del nervio vago. La información de ambos sitios se integra en el núcleo del tracto solitario, cuya función es modular la respuesta parasimpática y simpática, ocasionando vasodilatación o vasoconstricción, respectivamente.
Experimento 1: alteraciones del flujo sanguíneo arterial
Discusión Responde de manera individual o en equipos las siguientes preguntas: ● ¿Por qué el brazo adquirió un aspecto cianótico cuando se infló el manguito en el experimento 2 y, por otro lado, por qué el dedo índice adquirió un aspecto pálido en el experimento 1? ● ¿Qué cambios se pudieron observar después de la liberación del flujo sanguíneo en el experimento 1? ● ¿Por qué en el caso de una pelea nuestra piel puede palidecer? Consideraciones de seguridad Se debe advertir a los estudiantes que, si la presión del manguito del esfigmomanómetro/banda elástica se vuelve dolorosa, deben desinflarla y quitarla del brazo/dedo inmediatamente y no esperar hasta el final del tiempo de parada del experimento. Resultados previstos ● En el experimento 1, la presión causada por el uso de una goma elástica en el dedo índice debería dar como resultado la blancura de la piel y el sujeto debería informar de frialdad y hormigueo en comparación con la mano en reposo. Después de que se quita el elástico, el dedo se enrojecerá y se calentará (hiperemia reactiva). ● En el experimento 2, una presión moderada de inflado del manguito debería promover la cianosis de los dedos y los brazos (decoloración azulada de la piel), uñas blanquecinas y venas limítrofes bien definidas. Esta presión promueve estas alteraciones porque la presión del manguito no ocluye el flujo arterial pero sí ocluye las venas, evitando que la sangre fluya fuera de la mano y el brazo. Los vasos venosos están más cerca de la superficie corporal. Atrapar sangre en estos vasos promueve la piel azulada. En este experimento, el tiempo necesario para que la piel vuelva a su aspecto normal es breve.
3. Viñeta Clínica Se presenta ante usted Fabián, paciente masculino de 66 años de edad, trabaja como leñador en el campo. Padece hipertensión arterial sistémica desde hace 20 años, tratado con enalapril 40 mg cada 24 horas. Mientras se encontraba talando un árbol, sufrió múltiples picaduras por un enjambre de abejas (>500 aproximadamente), las cuales tenían su colmena en la parte superior del árbol. Minutos después comenzó con dificultad respiratoria, motivo por el cual fue ingresado en el servicio de urgencias. Se le tomaron signos vitales, encontrando lo siguiente: TA: 75/50 mmHg, FC: 97 lpm, FR: 28 lpm, T: 36.5°C A la exploración física se observa agitación psicomotora, dificultad respiratoria marcada y rash cutáneo generalizado, además de numerosas picaduras en todo el cuerpo (> aproximadamente) (figura 5).
Condiciones del paciente
Fig. 5. Palpar la arteria braquial. Fig. 6. Colocar la campana del estetoscopio en el nivel de la arteria braquial. Fig. 7. El centro de la cámara debe coincidir con la arteria braquial. El manguito debe quedar a la altura del corazón. Establecer la presión arterial sistólica por palpación de la arterial braquial/radial, e inflar el manguito para determinar por palpación el nivel de la presión sistólica.