






Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Este documento explora el concepto de formalización en lógica, utilizando modelos formales para estudiar argumentos y proposiciones. Se analiza la distinción entre propiedades matemáticas y lógicas, y se destaca la importancia de la interpretación lógica de los sistemas formales. El documento también explora la analogía entre formalización y traducción, y la necesidad de un ir y venir entre intuiciones lógicas y propiedades formales.
Tipo: Guías, Proyectos, Investigaciones
1 / 10
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Borrador de Conferencia
las alas la estabilidad de la nave, por ejemplo, es de suponer que reproduciremos dicha forma en el modelo. Es decir, es muy sensato que el modelo tenga alas de la misma forma. Igualmente, el aire que corre por el túnel no es un viento propiamente dicho, pero comparte las suficientes características para que le sirva como modelo. En general, queremos que el modelo sea lo suficientemente similar a aquello que representa cómo para poder sacar conclusiones sustanciales de su comportamiento; pero también queremos que sea diferente, en el sentido de que sea más manejable, para que tenga sentido usarlo. Lo mismo sucede en filosofía, al estudiar la relación entre objetos (o, lo que es más común en el caso de la filosofía, conceptos) también solemos echar mano de modelos. Los modelos más comunes en filosofía suelen ser modelos formales, ya sean matemáticos o computacionales. El área que más ha explotado este tipo de modelos es la lógica, dónde no solemos estudiar los argumentos o proposiciones de manera directa, sino a través de modelos formales. Estos modelos funcionan, tan sólo en cuanto representan los aspectos relevantes del fenómeno a estudiar, pero de una manera más manejable. En lógica, formalizar, en este sentido, significa modelar formalmente (es decir, producir un modelo formal de) una proposición, argumento, teoría o lenguaje, para explicar o entender mejor sus propiedades y relaciones lógicas como validez, consistencia, consecuencia lógica, incompatibilidad, etc.
(^2). Nótese que esta última es esencial. (^3). Consistentes y completos. (^4). Pese a lo que podría sugerir esta cita aislada, Morado no cree que toda ‘lógica’ sea de este tipo, es decir, que toda lógica sea matematizada en mi sentido. La afirmación de Morado debe entenderse en el contexto de su discusión de la rivalidad en lógica. Las lógicas cuya rivalidad Morado estudia en este artículo son, de hecho, matematizadas. Sin embargo, de ello no se sigue que toda lógica sea matematizada. (^5). Morado encuentra antecedentes de esta distinción en el trabajo de Lungarzo (1984). Mi distinción, en cambio, encuentra inspiración en el trabajo de Kirwan (1995) sobre los diferentes tipos de verdades lógicas.
Una segunda analogía que nos puede ayudar a entender mejor la formalización en lógica es ya vieja y conocida: la formalización como traducción. Recórdemos que un buen traductor no pasa directamente del enunciado en un lengauje a su tarducción en otro. El buen traductor no es quién sabe cómo pasar palabra por palabra de un lenguaje a otro. Mas bién, el buen traductor aprovecha su conocimiento del primer lenguaje (y del contexto en el cual se usa el enunciado a traducir) para identificar la proposición expresada y luego explota su concoimiento del otro lenguaje, ellenguaje al cual se busca traducir el enunciado, para expresar la misma proposición de la manera más natural, dado el contexto. El buen traductor, por lo tanto, es uno que conoce muy bien ambos lenguajes y no subordina su conocimiento de uno al otro. El buen traductor, no pasa directamente de uno al otro, sino a través de la proposición expresada; y en este sentido, lo que traduce no es, en sentido estricto, el enunciado , sino la proposición expresada. Lo que le interesa no son las palabras o los enunciados, sino lo que éstas expresan. Lo mismo sucede con la formalización: un buen formalizador no pasa directamente y palabra-por- palabra del enunciado del lenguaje natural a la fórmula, sino que primero se detiene a identificar la proposición expresada por el enunciado original en su contexto, y sólo una vez que ha identificado la proposición, aprovehca su conocimeinto del sistema formal en el que hará la simbolización para bsucar la mejor manera de representar en él la forma lógica de la proposición en cuestión. En este sentido, bien podemos decir que lo que se formaliza NO son enunciados, sino proposiciones (y lo que se representa directamente es su forma lógica). Las propiedades y relaciones lógicas que nos interesan, de las que tratamos de dar cuenta a tarvés de la formalización son propiedades (y relaciones) de las proposiciones expresadas por los enunciadsos (en sus contextos), no de los enunciados mismos; y el lenguaje formal no es parasítico del natural. Formalizar es, en este sentido, como traducir, peor no es realmente traducir. El buen traductor no pasa diectamente de un lenguaje al otro, sino que trata de entender lo que se quiere decir en un lenguaje y luego lo trata de expresarlo en el otro. Comúnmente, lo que se trata de preservar en la traducción es el contenido, de tal manera que ambos enunciados, en cada lenguaje, tengan el mismo contenido, o contenidos lo más parecidos posibles. En la formalización, en contraste, queremos eliminar mucho del contenido expresado en el lenguaje natural, pues lo único que nos interesa es aquello que es lógicamente relevante. No nos interesa todo el contenido, sino sólo su así-llamada “forma lógica”. Es por eso que formalizar no es traducir sino modelar.
3. ¿Cómo sabemos si hemos formalizado bien? Cómo he mencionado, cuando hemos formalizado bien, podemos inferir de ciertas propiedades formales de fórmulas, a análogas propiedades lógicas de proposiciones (argumentos, teorías, lenguajes, o lo que sea que nos interese estudiar). Esto ha llevado a muchos a preguntarse, por supuesto, ¿cómo sabemos si hemos formalizado bien algo? La respuesta no es obvia ni sencilla y ya se la hacían lógicos como Ramsey y Russell a principios del siglo pasado. ¿No sería increíble que, así como tenemos mecanismos sencillos de prueba como las tablas de verdad, etc., tuviéramos también un mecanismo sencillo de formalización o, de perdida, uno que nos diga si formalizamos bien o mal? Por un lado, hay quienes piensan que es posible lograrlo y se han dedicado a diseñar métodos y programas computacionales que formalizan mecánicamente enunciados de lenguaje natural, y si bien hay avances significativos en esta dirección, aún no contamos con el santo grial de la formalización automatizada. Muchos filósofos piensan que es imposible. Después de todo, piensan, para saber si la formalización de la proposición expresada en un enunciado es correcta, uno debe poder identificar dicha proposición. Sin embargo, en la mayoría de los casos, identificar la proposición expresada en un enunciado requiere tomar en cuenta el contexto en el que éste se usa, y no hay manera en que podamos incluir toda la información necesaria para saber cómo explotar el contexto para determinar la proposición expresada por cualquier enunciado en cualquier contexto o circunstancia. Sin embargo, aún si no contamos con un método mecánico de formalización o verificación de formalizaciones, esto no significa el mayor problema para el lógico formal. Recordemos lo que hemos dicho desde el principio en esta plática: la formalización es una herramienta para el análisis lógico de proposiciones. Como tal, no tiene mucho sentido preguntarse si es la herramienta adecuada para el trabajo, antes de aplicarse a la tarea en cuestión. Ya decía Wittgenstein, que si queremos saber si una herramienta sirva para algo, lo mejor es simplemente tratar de usarla para eso. Si funciona, bien; si no, pues ya sabemos que no sirve para eso. Lo mismo se aplica a las formalizaciones. La mejor manera de saber si una formalización es correcta es aplicarla y ver si los resultados que ofrece son los deseados. En este respecto, vale la pena hacer una analogía más. Pensemos ahora en la cartografía, es decir, en la elaboración de mapas. Un mapa es también un modelo, una representación (a escala) de un objeto (un