Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Chrysler NGC 4 (INGENIERÍA MECÁNICA AUTOMOTRIZ), Guías, Proyectos, Investigaciones de Ingeniería Mecánica

Presentación sobre la famosa ECU DE CHRYSLER NGC 4, especialmente sobre la elaboración de un banqueador de la misma ECU, desde los materiales, diagramas y fotografías para la guía.

Tipo: Guías, Proyectos, Investigaciones

2023/2024

Subido el 09/04/2024

jose-carlos-osnaya-hernandez
jose-carlos-osnaya-hernandez 🇲🇽

1 documento

1 / 23

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
INSTITUTO DE ESTUDIOS SUPERIORES
ISIMA
PLANTEL TOLUCA
BANCO DE PRUEBAS PARA ECU`S
MANUAL TECNICO
DOCENTE:
ALUMNO (S):
JESUS BRANDON PEDRAZA SANCHEZ
GRADO Y GRUPO:
1º “G” MATUTINO
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Vista previa parcial del texto

¡Descarga Chrysler NGC 4 (INGENIERÍA MECÁNICA AUTOMOTRIZ) y más Guías, Proyectos, Investigaciones en PDF de Ingeniería Mecánica solo en Docsity!

INSTITUTO DE ESTUDIOS SUPERIORES

ISIMA

PLANTEL TOLUCA

BANCO DE PRUEBAS PARA ECU`S

MANUAL TECNICO

DOCENTE:

ALUMNO (S):

JESUS BRANDON PEDRAZA SANCHEZ

GRADO Y GRUPO:

1º “G” MATUTINO

INDEX

Introduction

The Computer Bench project is a comprehensive effort for education and research in automotive

engineering. It provides a versatile lab environment for analyzing computer systems in vehicles.

With the rapid evolution of automotive tech, this system offers specialized tools for practical

skills in diagnosing electronic issues. The manual guides users on constructing, operating, and

maintaining the Computer Bench, serving as a comprehensive resource for both educational

and professional use. The project blends theoretical knowledge with practical skills in

automotive engineering, inviting users to explore the functionalities of the tool for an enhanced

understanding of electronic systems in vehicle

Purpose

El Computer Bench arises to address the need for specialized tools in studying and diagnosing

computer systems in automotive vehicles. The project aims to provide a practical and versatile

laboratory environment.

Essentially, the Computer Bench is a platform designed to simulate real conditions in automotive

electronic systems. It integrates key sensor simulators such as the CKP (Crankshaft Position

Sensor), CMP (Camshaft Position Sensor), and an oxygen sensor simulator, among others.

These simulators allow students and professionals to recreate specific scenarios and analyze

the behavior of electronic control systems in vehicles.

The system also enables diagnostics and testing on simulated vehicle computers, providing a

hands-on experience to understand and solve common issues in automotive electronics. With a

focus on education and training, the Computer Bench becomes a valuable tool for developing

practical skills in resolving electronic problems in the automotive contex

47 μF μF

°C

Temperatura de

operación máxima: 80

°C

Número de pines: 2

Capacitor

100 μF

μF

Capacitancia: 100 μF

Tolerancia: ±20%

Temperatura de

operación mínima: -

°C

Temperatura de

operación máxima: 80

°C

Número de pines: 2

Capacitor

104

μF

Capacitancia: 100nF,

0.1uF, 104

Voltaje máximo: 50V

Tolerancia: ±80% 20%

Dieléctrico: Y5V

Tipo de montaje: A

través del orificio

THT Número de

pines: 2

Resistencia

1 kΩ

Potencia: 0,25 W

Rango de resistencia:

De 1E a 22M (serie E12)

Temperatura de

funcionamiento: De -

55°C a +155°C

Tolerancia: 5%

Resistencia

Resistencia eléctrica: 1,

Potencia de disipación:

0,25 vatios

Tolerancia: 5%

Material: Carbón

Potencia nominal: 5

Watts

Tolerancia: ± 10%

Resistencia

2.2 kΩ

Potencia: 2W

Valor: 1.2K

Tolerancia: ±5%

Coeficiente de

temperatura: ±350ppm /

°C

Terminales de la

resistencia: Axiales

Resistencia

4.7 kΩ

Valor: 4,7 KΩ

Potencia: 1/16 W (62,

mW)

Tolerancia: ±1%

Dimensiones: 1206

Empaquetado:

SMD/SMT

Resistencia

10 kΩ

Potencia: 0,25W

Tolerancia: 5%

Rango de resistencia: de

1E a 22M (serie E12)

Temperatura de

funcionamiento: de -

55°C a +155°C

Resistencia

100 kΩ

Resistencia: 100K Ohm

Potencia: 1/2 W

Tolerancia: ±1%

Tensión nominal: 350 V

Tipo: Metal

Potencia de disipación:

0,25 vatios

BC557 V/mA

Polaridad: PNP

Voltaje V (br) ceo: -45 V

Transición de

frecuencia ft: 150 MHz

Disipación de potencia

Pd: 500 mW

DC Corriente del

colector: 100 mA

LED`S lm

Corriente de operación:

10 mA - 20 mA

Voltaje de operación: 1.

V - 3.8 V

Caída de voltaje: 1.5 a

2.5V

Voltaje requerido

para encender: 1.5 y

voltios

Cable 20

AWG

N/A N/A

Material del conductor:

Estaño

Diámetro del conductor:

0,92 mm

Diámetro externo: 1,

mm

Espesor del aislamiento:

0,5 mm

Resistencia del

conductor: 62 Ohms/km

DB

Macho

N/A N/A

Uso: Para extensión

Tipo de conector: DB

Género: Plug (Macho)

Voltaje dieléctrico: 500

V Corriente: 3 A

Resistencia de contacto

máxima: 10 mΩ

DB

Hembra

N/A N/A

Tipo de conector: DB

Género: Jack (hembra)

Voltaje dieléctrico: 500 V

Corriente: 3 A

Resistencia de contacto

máxima: 10 mΩ

Tabla Fenólica

Perforada

5x

N/A N/A

Tipo: Grabada y

perforada

Número de caras: 1

Número de pistas: 98

Número de orificios para

componentes: 451

Número de orificios para

sujetar placa: 4

Material de la cara:

Cobre

Material de la placa:

Baquelita

Energy and land table

DB25 connection

DB25 DB25 connection color code

"'"

1/'

D

••

0 - 20

IQJ-

ECT

.

I

f"""t1/

I

IAT

Scnso,

do

l,etl'l II

ffftigef

a,ue

0 - 30

flerra<le

$('1'1$0 1 ('$ TPS

. I Sensor

tt'fflpc-tll

del;,t

St"n,orde p ioon

ck!lmMip()SII
aceleradl)n

Ct-'il

(1- 18

C◄-U

(4- 13

(4- 14

O·ll

,, ..

E 4 limen1.1d6n

desensores

  • ...!:-

MAP

IC

sensoide

p,iesi6rl

absoluudolmul

0 - )

HEGO

)i

Tierr.11de

$C'l1WIC"$

se.-1so1de Vilcl()del

dea<lmlSl(n\

Cl-J

Q- 17

a-n

oxigeno1/ mul\ij)lede C:::::..

11dm1,i6n

+ HEGO

Sc:n,orde OXogeno 112

Cl- 32

O·lA

, ,

·i

l

KS

_L

0-2.S

'llXXXXXXXXJI.

AAA

y y y xxxxYx'l,:xxx

X X X X

•••••

8 l1ncl.1je

senso1de

1Xton11cli>n

0

Electronic circuits for creating the simulator

CKP Circuit

A CKP sensor, or Crankshaft Position Sensor, is a crucial component in vehicle engine

control systems. This sensor monitors the position and rotational speed of the

crankshaft, providing essential information for controlling and synchronizing various

engine functions.

CMP Sensor Key Features and Functions

- Location: Typically found near the engine crankshaft, either at the front or rear of the

engine block.

  • Main Function: Detects the exact angular position of the crankshaft at any given

moment. This information is crucial for synchronizing fuel injection and ignition, as well

as other engine control functions.

  • Sensor Type: Can be magnetic or Hall effect. Magnetic sensors generate signals as the

teeth of the engine flywheel pass near them, while Hall effect sensors use a magnetic

field to generate signals.

  • Output Signal: The CKP sensor emits an electrical signal that varies with the

crankshaft's position. This signal is sent to the Engine Control Unit (ECU), which uses it

to determine the precise timing of fuel injection and ignition.

Materials

Name Amount Component

BAT1 1 Pila de 9 V

U1 1 Temporizador

Rpot1 1 100 kΩ Potenciómetro

R1 1 2.2 kΩ Resistencia

C1 1 100 uF, 16 V Condensador polarizado

C2, C3 2 100 nF Condensador

R2 1 1 kΩ Resistencia

D1 1 Verde LED

Materials

Name Amount Component

U1 1 Temporizador

C1 1 100 uF, 16 V Condensador polarizado

R1 1 2.2 kΩ Resistencia

R2 1 4.7 kΩ Resistencia

Rpot1 1 50 kΩ Potenciómetro

C2 1 100 nF Condensador

BAT1 1 Pila de 9 V

D1 1 Blanco LED

Circuit

Oxygen Sensor Simulator

The oxygen sensor, also known as lambda sensor or O2 sensor, is a vital component in

the emission control system of automotive vehicles, especially those with internal

combustion engines.

Key features and functions of the oxygen sensor:

- Main Function: The oxygen sensor monitors the amount of oxygen in the engine's

exhaust gases. Its primary role is to measure the residual oxygen proportion in the

exhaust gases and send this information to the Engine Control Unit (ECU).

  • Location: Typically found in the vehicle's exhaust system, near the exhaust manifold or

catalyst.

  • Types of Sensors:
    • Wideband Oxygen Sensor: Provides precise and detailed measurement of the air-fuel

mixture, allowing for greater efficiency and emission reduction.

  • Narrowband Oxygen Sensor: The most common and economical type. Provides

feedback to the engine control system to adjust the air-fuel mixture as close as possible

to the stoichiometric ratio.

  • Output Signal: The oxygen sensor generates an electrical signal that varies based on

the oxygen content in the exhaust gases. This signal is interpreted by the ECU, which

adjusts the air-fuel mixture in real-time to optimize engine efficiency and reduce

emissions.

  • Importance for the Engine: The oxygen sensor is crucial to ensure efficient engine

operation and compliance with emission regulations. It allows the ECU to adjust the air-

fuel ratio to keep it within optimal limits, contributing to more complete combustion and a

reduction in harmful emissions.

Materials

Name Amount Component

U1 1 Temporizador

R1, R2, R3 3 100 kΩ Resistencia

R4, R5, R6 3 1 kΩ Resistencia

C1 1 4.7 uF, 16 V Condensador polarizado

C2 1 1 uF, 16 V Condensador polarizado

R7 1 10 kΩ Resistencia

D1 1 Rojo LED

C3 1 47 uF, 16 V Condensador polarizado

T1 1 Transistor NPN (BJT)

Materials

Name Amount Component

R1 1 1 kΩ Resistencia

D1 1 Rojo LED

Circuit

MAP and BARO Circuit

1. MAP (Manifold Absolute Pressure Sensor):

The MAP sensor measures the absolute pressure inside the engine's intake manifold.

The information provided by this sensor is crucial for the Engine Control Unit (ECU) to

determine the engine load and adjust the air-fuel mixture accordingly. The MAP sensor

helps optimize engine efficiency under different operating conditions, such as

acceleration, deceleration, and engine load. Additionally, it is used to diagnose potential

issues in the intake system, such as vacuum leaks.

2. BARO (Barometric Pressure Sensor):

The BARO sensor measures barometric pressure, i.e., atmospheric pressure in the

vehicle's surroundings. The ECU uses this information to adjust the air-fuel mixture

based on atmospheric conditions. For instance, when a vehicle is at higher altitudes

where atmospheric pressure is lower, the ECU can adjust the mixture to compensate for

the lower air density conditions. This sensor is particularly useful in geographic areas

with significant variations in altitude.

Materials

Nombre Cantidad Componente

R1, R2 2 100 Ω Resistencia

R3 1 10 kΩ Resistencia

Circuit

Circuit

ECT (Engine Coolant Temperature Sensor):

The ECT sensor, or Engine Coolant Temperature Sensor, monitors the temperature of

the coolant in the engine cooling system. The information provided by this sensor is vital

for engine management. The ECU uses the ECT sensor reading to adjust the air-fuel

mixture, ignition timing, and other engine functions based on the coolant temperature.

This sensor is crucial to ensure that the engine operates within optimal temperature

ranges, affecting engine performance and efficiency.

IAT (Intake Air Temperature Sensor):

The IAT sensor, or Intake Air Temperature Sensor, measures the temperature of the air

entering the engine's intake system. Similar to the ECT sensor, the IAT sensor provides

information to the ECU to adjust the air-fuel mixture and other engine functions. The

intake air temperature can significantly affect air density and, therefore, the amount of

oxygen available for combustion. Adjusting the mixture based on this temperature

contributes to optimal engine performance and efficiency.

Materials

Materials

Name Amount Component

R1 1 5 kΩ Resistencia