Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Penicilinas: Mecanismo, Susceptibilidad y Farmacología, Guías, Proyectos, Investigaciones de Farmacología

Este documento ofrece un detallado análisis sobre las penicilinas, una clase importante de antibióticos bactericidas. Se abordan aspectos como su mecanismo de acción, susceptibilidad bacteriana, combinación con otras drogas y reacciones adversas. Además, se discuten los diferentes tipos de penicilinas y su farmacología clínica, incluyendo absorción, niveles séricos y eliminación.

Qué aprenderás

  • ¿Qué bacterias son susceptibles a las penicilinas?
  • ¿Cómo funciona el mecanismo de acción de las penicilinas?
  • ¿Cómo se administran las penicilinas junto con otras drogas?
  • ¿Cómo se absorben, distribuyen y eliminan las penicilinas en el cuerpo?
  • ¿Qué tipos de penicilinas existen y qué diferencias presentan en términos de farmacología clínica?

Tipo: Guías, Proyectos, Investigaciones

2021/2022

Subido el 09/12/2022

ana-maria-sojo
ana-maria-sojo 🇻🇪

1 documento

1 / 10

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
REVISION SOBRE PENICILINAS
PRIMERA PARTE
Margarita Castillo *
Resumen
Se analiza detalladamente diferentes aspectos del grupo de antibióticos de las penicilinas. Se hace
énfásis en su mecanismo de acción, susceptibilidad bacteriana, electos combinados con otras drogas,
reacciones adversas y otros aspectos farmacológicos. (Rev. Cost. Cienc. Méd. 1 (1): 1-10, 1980).
Introducción
Pocos descubrimientos han tenido un impacto mayor en la práctica de la medicina que las penicilinas.
Las primeras que se derivaron, llamadas “penicilinas naturales”, proporcionaron la terapia definitiva para
muchas infecciones anteriormente letales. Con la prevalencia creciente de cepas de Staphylococcus
aureus resistentes a la penicilina durante los años 1950, se hicieron esfuerzos por producir congéneres
que no fueran susceptibles a la penicilinasa elaborada por esos organismos. La meticilina fue la
penicilina original resistente a la penicilinasa (1960); le siguieron la nafcilina y las isoxazolil penicilinas
(oxacilina, cloxacilina, dicloxacilina y flucloxacilina). Este grupo comprende sustancias estrechamente
relacionadas que difieren solamente en el número de halógenos sustituyentes (cloruro o fluoruro). La
década pasada fue el testimonio de una nueva era en la evolución de las penicilinas con la introducción
de los grupos de “amplio espectro”. El primero de estos grupos comprende la ampicilina y la amoxicilina
así como ciertos agentes derivados de la ampicilina (por ejemplo hetacilina y pivampicilina), activos
contra Haernophy/us influenzae y Escherichia coli. El grupo más reciente, carbenicilina y ticarcilina,
exhiben un espectro que incluye muchos bacilos gramnegativos entre ellos Pseudomonas sp.
Mecanismo de acción
Las penicilinas son antibióticos bactericidas, esto es, no simplemente interrumpen la proliferación de
las bacterias sino que las destruyen. Lo hacen interfiriendo con la actividad de las enzimas (por ejemplo
transpeptidasa), la cual convierte las moléculas de glucopéptidos de la pared celular en monómeros
estables.
Los organismos gramnegativos, que están envueltos en una fuerte capa lipopolisacárida, son menos
dependientes que los grampositivos de la integridad de la molécula glucopéptida para resistir la lisis
osmótica; correspondientemente, son menos susceptibles a la acción de las penicilinas que las bacterias
grampositivas. Las cepas sensibles muestran diferentes grados de inhibición por los diferentes análogos
de las penicilinas; las razones esto no son claras. Sin embargo, puede demostrarse una correlación con
la solubilidad en lípidos del antibiótico en particular.
* Regente farmacéutica, Almacén General, Caja Costarricense de Seguro Social.
1
pf3
pf4
pf5
pf8
pf9
pfa

Vista previa parcial del texto

¡Descarga Penicilinas: Mecanismo, Susceptibilidad y Farmacología y más Guías, Proyectos, Investigaciones en PDF de Farmacología solo en Docsity!

REVISION SOBRE PENICILINAS

PRIMERA PARTE

Margarita Castillo *

Resumen

Se analiza detalladamente diferentes aspectos del grupo de antibióticos de las penicilinas. Se hace énfásis en su mecanismo de acción, susceptibilidad bacteriana, electos combinados con otras drogas, reacciones adversas y otros aspectos farmacológicos. (Rev. Cost. Cienc. Méd. 1 (1): 1-10, 1980).

Introducción

Pocos descubrimientos han tenido un impacto mayor en la práctica de la medicina que las penicilinas. Las primeras que se derivaron, llamadas “penicilinas naturales”, proporcionaron la terapia definitiva para muchas infecciones anteriormente letales. Con la prevalencia creciente de cepas de Staphylococcus aureus resistentes a la penicilina durante los años 1950, se hicieron esfuerzos por producir congéneres que no fueran susceptibles a la penicilinasa elaborada por esos organismos. La meticilina fue la penicilina original resistente a la penicilinasa (1960); le siguieron la nafcilina y las isoxazolil penicilinas (oxacilina, cloxacilina, dicloxacilina y flucloxacilina). Este grupo comprende sustancias estrechamente relacionadas que difieren solamente en el número de halógenos sustituyentes (cloruro o fluoruro). La década pasada fue el testimonio de una nueva era en la evolución de las penicilinas con la introducción de los grupos de “amplio espectro”. El primero de estos grupos comprende la ampicilina y la amoxicilina así como ciertos agentes derivados de la ampicilina (por ejemplo hetacilina y pivampicilina), activos contra Haernophy/us influenzae y Escherichia coli. El grupo más reciente, carbenicilina y ticarcilina, exhiben un espectro que incluye muchos bacilos gramnegativos entre ellos Pseudomonas sp.

Mecanismo de acción

Las penicilinas son antibióticos bactericidas, esto es, no simplemente interrumpen la proliferación de las bacterias sino que las destruyen. Lo hacen interfiriendo con la actividad de las enzimas (por ejemplo transpeptidasa), la cual convierte las moléculas de glucopéptidos de la pared celular en monómeros estables. Los organismos gramnegativos, que están envueltos en una fuerte capa lipopolisacárida, son menos dependientes que los grampositivos de la integridad de la molécula glucopéptida para resistir la lisis osmótica; correspondientemente, son menos susceptibles a la acción de las penicilinas que las bacterias grampositivas. Las cepas sensibles muestran diferentes grados de inhibición por los diferentes análogos de las penicilinas; las razones esto no son claras. Sin embargo, puede demostrarse una correlación con la solubilidad en lípidos del antibiótico en particular.

  • Regente farmacéutica, Almacén General, Caja Costarricense de Seguro Social.

Resistencia

Un organismo resistente es aquél que no es inhibido por niveles de la droga rápidamente obtenidos en el suero. Sin embargo, si se administran dosis masivas del antibiótico, o la infección está localizada en un sitio donde el agente está concentrado (tracto urinario, por ejemplo), los ensayos ordinarios de susceptibilidad pueden no ser aplicables. El nivel que indica resistencia a la carbenicilina y ticarcilina, drogas que se dan parenteralmente a grandes dosis, ha sido cerca de 100 veces mayor que para otras penicilinas. El mecanismo de la resistencia bacteriana a las penicilinas cae en tres grandes grupos:

  1. Elaboración de sustancias (penicilinasa) que pueden inactivar el antibiótico.
  2. Alteración en el sitio receptor. Por medio de enzimas los sitios receptores de la pared celular bacte- riana adquieren una configuración diferente no permitiendo la interacción entre receptor y penicilina.
  3. Impermeabilidad de la bacteria de modo que el antibiótico no puede alcanzar su objetivo.
    1. La mayor parte de la resistencia alcanzada clínicamente entre las bacterias aeróbicas se atribuye a la formación de enzimas que inactivan el antibiótico. Los genes que controlan la producción de estas enzimas son transportados normalmente en fragmentos extracromosómicos del ácido desoxirribonucleico llamados plásmidos. Ciertos plásmidos grandes son capaces de transferir copias de ellos mismos, por conjugación dentro de otras bacterias y se denominan factores R. Los factores R son citoplásmicos e independientes de los cromosomas de la bacteria, lo que indica que la transmisión de resistencia no se debe a recombinación sexual. Por este mecanismo se hace resistente a la penicilina el Staphvlococcus aureus y cepas recientemente conocidas de Haemophylus influenzae resistentes a la ampicilina. Los factores R son de particular importancia porque: a. Son capaces de expresar resistencia a muchos antibióticos no relacionados. b. Pueden ser transmitidos a través de colonias de los mismos bacilos gramnegativos o relacionados con gran rapidez. La resistencia a drogas en infecciones mediada por factores R trae como consecuencia serios problemas epidemiológicos.
  4. Los estafilococos resistentes a la meticilina, de amplia prevalecencia en Europa pero raros en América en la actualidad, representan ana situación especial. Son organismos resistentes a múltiples drogas, con frecuencia susceptibles sólo a vancomicina, E! mecanismo de esta resistencia parece ser de la segunda clase anotada, es decir, exhiben una peculiaridad en la estructura de su pared celular que no permite la interacción de los receptores con la penicilina.
  5. Un ejemplo del tercer mecanismo es la resistencia de los gonococos a la penicilina. A pesar de la baja magnitud al presente, el grado de resistencia se está elevando progresivamente hasta el punto de que la terapia con una sola dosis para gonorrea es posible que no sea efectiva dentro de algún tiempo. Estos organismos generalmente exhiben una susceptibilidad disminuida a una variedad de antibióticos, supuestamente porque son relativamente impermeables a estas drogas. Recientemente han habido reportes de varias partes del mundo documentando una rápida elevación en la prevalencia de gonococos moderadamente resistentes a la penicilina, así como la aparición de algunas cepas altamente resistentes que elaboran penicilinasa.

Farmacología clínica

Absorción

En los Cuadros 2 y 3 se muestran características pertinentes de la farmacología de las penicilinas en el hombre, resumidas de una publicación reciente. De todos los congéneres solamente la penicilina V y la amoxicilina exhiben regularmente una absorción por boca mayor del 50 por ciento. Sin embargo, otros estudios revelan una absorción del 45 por ciento para la penicilina V. (14). Por razones que no son claras, la sal potásica de la penicilina V es mejor absorbida que la sal sódica. Al menos parte de la relativamente pobre biodisponibilidad de la penicilina G, meticilina, carbenicilina y nafcilina se debe a su labilidad ácida. Aunque la carbenicilina como tal es rnínimamente absorbida por boca, el indanil éster es moderadamente bien asimilado y después de la absorción se desdobla rápidamente en el compuesto original. La presencia de alimento en el estómago retarda o deteriora la absorción de la mayoría de las penicilinas excepto la penicilina V, ampicilina y amoxicilina; por lo tanto es prudente aconsejar a los pacientes que ingieran penicilinas media o una hora antes de las comidas o bien dos horas después de las mismas. Se ha reportado (14) que la ingesta de alimento reduce en un 50 por ciento los niveles séricos de la penicilina V.

Niveles séricos : Los niveles séricos de varias penicilinas después de una dosis oral de 0,5 g son marcadamente diferentes a causa de los diferentes grados de abosorción, metabolismo y grado de unión con las proteínas (Cuadro 2). Como los antibióticos ligados a las proteínas séricas no son antibacterialmente activos ni rápidamente disponibles para difusión en los tejidos, es de interés examinar los niveles de la droga libre en el suero después de esta misma dosificación oral (Cuadro 2). Los valores son sorprendentemente diferentes de aquéllos para el antibiótico “total’’ (ligado y no ligado) y tienden a viciar muchas de las aparentes diferencias entre congéneres estrechamente relacionados (oxacilina contra dicloxacilina).

Distribución : Las penicilinas son bastante bien distribuidas en fluido intersticial, cavidades serosas, fluido sinovial, hueso y placenta. Como son relativamente insolubles en lípidos, exhiben poca penetración en las células (incluyendo leucocitos poliformonucleares) y a través de la barrera hematocerebral y las barreras sanguíneo acuosas. La inflamación mejora su penetración en el S N C y en el ojo, reduciendo las barreras y debilitando la actividad de las bombas de aniones orgánicos en el plexo coroides (cerebro) o en el ciliar (ojo). Los datos para la penetración menínguea mostrados en el Cuadro 2 deben considerarse circunspectivamente ya que fueron recogidos de pequeños números de sujetos bajo condiciones marcadamente diferentes. Para tratar la meningitis los médicos deben disminuir las dosis de penicilina a medida que la enfermedad mejora porque la permeabilidad de la barrera hematocerebral declina durante la convalecencia. Aunque la publicación no está firmemente documentada, las penicilinas parecen penetrar los abscesos jóvenes bastante bien y puede que algún otro fenómeno además del acceso de la droga sea responsable del fracaso de los agentes antimicrobianos para esterilizar tales focos.

Eliminación: La principal vía de eliminación de la mayoría de las penicilinas es la vía urinaria, eliminándose a través de ésta la droga como tal; así, la mayor parte de los congéneres producen altas concentraciones urinarias si se absorben. Una porción de cada agente se metaboliza (Cuadro 2) lo qoe es especialmente notable con la penicilina y la oxacilina y contribuye al mínimo cambio en la vida media de la oxacilina en fallo renal. La mayor parte de las penicilinas son activamente secretadas en la bilis, produciendo concentraciones biliares que exceden las séricas. Sin embargo, los mecanismos de transporte se saturan fácilmente, en particular con oxacilina y carbencilina. Los niveles de penicilina G y de ampicilina en la bilis alcanzan concentraciones diez veces las concentraciones séricas y son aún mayores con la nafcilina. La penetración en la bilis es extremadamente pobre en presencia de obstrucción común del conducto. A pesar de la presencia de secreción activa, el único congénere para el cual la secreción biliar juega un importante papel en la eliminación es la nafcilina. Como la mayoría de las penicilinas se secretan rápidamente en la orina. sus vidas medias en el suero son extremadamente cortas (Cuadro 3). Correspondientemente, el fallo cardíaco impone un gran obstáculo a los mecanismos de eliminación, prolongando sustancialmente la vida media. La nafcilina, la oxacilina, la dicloxacilina y la cloxacilina constituyen excepciones a esta regla general por su metabolismo más extenso, su secreción biliar o ambos. En presencia de anuria completa generalmente es aconsejable no exceder 3 millones de unidades de penicilina G por día; si coexiste enfermedad renal avanzada esta dosis debe llevarse a la mitad. Aquellos agentes que exhiben una prolongación mayor de la vida media en fallo renal son (con excepción de la meticilina) más fácilmente hemodializados (Cuadro 3). Ninguna de las penicilinas se remueven fácilmente por diálisis peritoneal.

El metabolismo rápido de algunas penicilinas y el amplio margen que exhiben en su toxicidad hacen necesarios solo ligeros ajustes en las dosificaciones para pacientes con daño renal en la mayoría de los casos. Sin embargo, debe tomarse muy en cuenta el contenido de sodio y potasio que en dosis altas puede ocasionar trastornos. En el Cuadro 4 se da el contenido de sodio o potasio en las penicilinas.

Los efectos del daño hepático y renal combinados sobre la eliminación de las penicilinas no han sido bien definidos. En general, la superimposición del daño renal parece prolongar la vida media varias veces sobre la encontranda cuando sólo hay daño renal (sin presencia de daño hepático conjunto); para la nafcilina la diferencia puede ser sustancial. Aunque no se muestra en los cuadros, la farmacocinética de la flucloxacilina y de la ticarcilina se parece a la de la dicloxacilina y carbenicilina respectivamente. Las formas de depósito de la penicilina G incluyen penicilinas que se absorben mucho más lentamente que las sales de sodio o potasio de los sitios de inyección intramuscular, pero después de la absorción siguen la misma cinética de la penicilina G.

Efectos adversos

Las principales reacciones adversas de la penicilina, las reacciones de hipersensibilidad, oscilan en severidad clínica desde la ligera erupción cutánea (con eosinofilia variable) pasando por enfermedad del suero hasta anafilaxia y muerte inmediata. Algunas veces se ha continuado tratando con penicilinas a pacientes con rash y eosinofilia cuando tal terapia es justificada (endocarditis enterocóccica). Aunque todas las penicilinas son capaces de producir reacciones de hipersensibilidad, las erupciones cutáneas parecen ser más comunes con la ampicilina que con otros congéneres (7 contra 3 por ciento). Entre los pacientes que tienen mononucleosis infecciosa o infección por citomeglavirus es casi universal una enfermedad conocida como reacción de la piel a la ampicilina.

  1. Reece y Chamberlain. Manual of Emergency Pediatrics W. B. Saunders Co., 9th Ed., 1974. pág. 305-306.
  2. Boedeker y Dauber. Manual of Medical Therapeutics, Boedeker y Dauber Editors, 2lth Ed., 1974, pág. 409-417.
  3. Ticarcillin. The Medical Letter on Drugs and Therapeutics, 19(4)17-20, 1977.
  4. Dinel B. A. et al. Stability of Antibiotics Admixtures frozen in minibags, Drug Intelligence and Clinical Pharmacy, 2(9):542-548, 1977.
  5. Petersom Charles D. et al. Ticarcillin and Carbencillin, Drug Intelligence and Clinical Pharmacy 2 (8) ; 482-486, 1977.
  6. Penicillin V Potassium. Journal of the American Pharmaceutical Association NS17 (4):243-246,
  7. Le Frock Jack L. et al. Treatment of Anaerobic Infections, Journal of the American Pharmaceutical Association, NS16 (5):250—253, 1976.
  8. Trissel Laurence A. Handbook of injectable Drugs, The American Society of Hospital Pharmacists. 1977, pág. 29-38.
  9. The U.S. Pharmacopeial Convention, The United States Pharmacopea, Mac Printing Company. 19th rey, 1974, pág. 362-368.
  10. Osol y Pratt. The United States Dispensatory, J.B. Lippincott Company, 27th Ed., 1973, pág. 847-
  11. American Pharmaceutical Association, The National Formulary, Mack Printing Company, 14th Ed., 1974, pág. 535-537.