






Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Un estudio sobre las modificaciones químicas que ocurren en la superficie de la madera de teca durante el proceso de tratamiento termico. Se investiga el efecto de la modificación termica en la composición química de la madera, especialmente en relación a la celulosa, lignina y extractivos, mediante el análisis por espectroscopia infrarroja reflejada (FTIR). El estudio fue realizado en madera juvenil de teca y se llevó a cabo en cuatro etapas a dos temperaturas distintas: 180 y 200°C. Se observó una disminución significativa en las intensidades de los picos asignados a los grupos hidroxilo (OH) en la madera modificada termicamente, lo que puede explicarse por su degradación térmica o por diferentes cantidades de agua contenidas en la madera no tratada y tratada termicamente. Además, se calcularon los valores relativos de la cristalidez de la celulosa, la región amorfa de la celulosa y la lignina.
Tipo: Apuntes
1 / 10
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 DOI: 10.4067/S0718-221X ISSN impresa 0717- ISSN online 0718-221X
Juliana de Oliveira Lopes^1 , Rosilei Aparecida Garcia^2 ,♠, Natália Dias de Souza^2 ABSTRACT During the thermal modification of the wood there is a decreasing gradient of temperature from the surface to its interior, therefore, the most severe chemical modifications occur on the surface. These chemical modifications directly affect the quality and durability of adhesives and coating. Therefore, this study investigated the chemical modification of the surface of thermally-modified teak juvenile wood. Heartwood and sapwood samples were treated at 180 and 200ºC. Chemical analyses were performed by Fourier transform infrared spectroscopy (FTIR) in reflectance mode with a microscope. Spectra showed an increase in cellulose crystallinity and a decrease in relative contents of hydroxyl groups, lignin and extractives – especially quinones, waxes and oils – following thermal modification. Extractive content of the heartwood was relatively higher than that of sapwood. Heartwood was more susceptible to thermal degradation than sapwood. Keywords: Cellulose crystallinity, chemical modification, heat treatment, quinone derivatives, Tectona grandis. INTRODUCTION Thermal modification provides desirable properties to wood such as increased resistance to fungal degradation (Weiland and Guyonnet 2003), greater dimensional stability (Syrjäne 2001) and change on the original colour (Lopes et al. 2014). It is an alternative method to the use of chemical preservatives in which wood is heated to temperatures ranging from 160 to 250ºC, usually near to 200ºC, for variable processing time depending on the intrinsic characteristics of the wood species and the desired properties for the final product. Although the treatment causes physical and chemical modifications in the cellular structure of the wood, the chemical modifications are the most important because of their impact to the properties of the thermally-modified material. For example, on thermally- modified wood occurs conversion of hydroxyl (OH) groups in cross-ether bonds between the polymers of the cell wall; extractive volatilization and migration to the surfaces (Christiansen 1994); reaction of depolymerization of hemicelluloses; degradation of the amorphous region of cellulose; increasing in cellulose crystallinity with a decrease of the free OH groups (Boonstra and Tjeerdsma 2006); and condensation and crosslinking between lignin and the products resulting from thermal degradation (Tjeerdsma and Militz 2005) which reduce the hygroscopicity. Hence, during thermal modification of wood are initiated various hydrolysis, oxidation and mass transfer reactions resulting in a modified structure (Popescu and Popescu 2013). The reduction in free OH groups has a positive impact on the (^1) Doctor student. Departamento de Produtos Florestais Departamento de Produtos Florestais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro. Brazil_._ (^2) Professor. Departamento de Produtos Florestais Departamento de Produtos Florestais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro. Brazil_._ ♠Corresponding author: rosileigar@ufrrj.br Received: 26.09.2017 Accepted: 17.07.
Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 U n i v e r s i d a d d e l B í o - B í o wood resistance to water penetration, resulting in a more hydrophobic and dimensionally stable material (Weiland and Guyonnet 2003, Rousset et al. 2004, Wikberg and Maunu 2004). Thermal modification can also degrade the anatomical structure of wood (Awoyemi and Jones 2011) and increase its porosity (Nunes et al. 2016). Awoyemi and Jones (2011) observed a degradation in the bordered pits of the tracheids of Thuja plicata wood following thermal modification. Nunes et al. (2016) observed a higher adhesive penetration in the thermally-modified Eucallyptus pellita and Corymbia citriodora woods compared to unmodified wood due to increased porosity. All these modifications can also affect the quality and durability of adhesives and coatings applied to wood surfaces. The teak wood has a high commercial value due to the excellent physical and mechanical properties. However, teak wood from Brazilian plantations has peculiar characteristics such as high proportion of juvenile wood (short cutting cycle - 25 years) (Shimizu et al. 2 007) and higher proportion of sapwood, which has physical, chemical and aesthetic characteristics (color and design) different from those of heartwood. The composition and content of extractives are different between heartwood and sapwood. In teak wood are found various quinone derivatives, some present in heartwood and sapwood such as 2-hydroxymethyl; and other exclusively in heartwood such as anthraquinone, 1,4-naphthoquinone, anthraquinone-2-carboxylic acid and lapachol (Niamké et al. 2011). Teak sapwood has high concentration of starch, sucrose, glucose and fructose and low concentrations of H (hydroxycinnamic acid derivative) and tectoquinone (Niamké et al. 2011). The largest natural durability of the heartwood compared to that of sapwood could be explained by the higher concentration of 2-hydroxymethyl anthraquinone, tectoquinone (Moreira et al. 2006, Niamké et al. 2011, Nidavani and Mahalaksmi 2014) and lapachol (Nidavani and Mahalaksmi 2014), which have phenolic nature. The lapachol is one of the most studied naphthoquinones in the fields of chemistry and pharmacology due to its therapeutic applications such as anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibactericidal and fungicidal (Hussain et al. 2007). The teak wood also presents caoutchouc in the cell wall and lumen, which are responsible for the hydrophobicity and antioxidant properties of the wood (Yamamoto et al. 1998). Heartwood contains higher caoutchouc concentration than sapwood, giving it lower permeability (Yamamoto et al. 1998). The amount of extractives also depends of the tree age. Haupt et al. (2003) found higher extractives amount in teak heartwood from fast-grown plantation trees (29 years-old) than from natural stands (100 years-old). Thermal modification could provide greater durability and dimensional stability to the teak sapwood besides standardizes the color of wood pieces containing heartwood and sapwood (Lopes et al. 2014). The chemical modifications of lignocellulosic materials following thermal modification have been evaluated by several spectroscopic methods among them the Fourier transformed infrared (FTIR) spectroscopy stands out for providing quickly and effectively information on the composition of the functional groups (Li et al. 2015). However, the FTIR analysis of thermally-modified wood are usually held for sapwood (Fabiyi and Ogunleye 2015), whose composition is less complex than heartwood. Furthermore, several studies evaluate the chemical modification of thermally-modified wood by FTIR spectroscopy (Li et al. 2015) potassium bromide pellet (KBr) method, which does not allow assessing the condition of the wood surface. During the thermal modification have a decreasing gradient of temperature from surfaces to the interior of the wood, therefore the surface modifications are more severe than the inner part, emphasizing the importance of evaluating the surface condition using FTIR spectroscopy in the reflectance mode. In this context, this study investigated the chemical modification of the surface of teak juvenile wood following thermal modification by FTIR spectroscopy in the reflectance mode using a microscope. MATERIAL AND METHODS Material and thermal modification Teak ( Tectona grandis L. f.) wood samples with nominal dimensions of 150 mm x 75 mm x 20 mm were obtained from six trees of 12 years old. The material was separated in heartwood and sapwood, air dried and conditioned at 20oC and 65% relative humidity (RH) in a climate chamber until constant weight.
Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 U n i v e r s i d a d d e l B í o - B í o Figure 2. FTIR spectra of teak sapwood. A: unmodified wood. B and C: thermally-modified woods at 180 and 200ºC, respectively. Table 1. Summary of FTIR spectroscopy band assignments of unmodified and thermally-modified teak heartwood and sapwood. Wavenumber (cm -1) Band assignment^ Polymer ≈ 3470 O-H stretching Polymers[1] ≈ 2900, ≈ 2943 CH-sp^3 stretching Polymers[2] ≈ 1725 C=O stretching of carbonyl, carboxyl and acetyl groups; and of xylans Oils [3]; cellulose and hemicelluloses[4-5] ≈ 1640 Conjugation of C=O with two aromatic rings Quinones[3] ≈ 1514 Aromatic skeletal vibration (C=C) of lignin, guaiacyl> syringyl Lignin[1] ≈ 1474 C-H deformation in lignin and carbohydrates; CH 2 symmetric angular deformation and CH 3 angular asymmetric angular deformation Lignin[1]; Oils and waxes[3] ≈ 1342 C-H 2 deformation vibration; CH 3 symmetric deformation Cellulose and hemicelluloses[1]; oils[3] ≈ 1245 C-C, C-O and C=O stretching; G condensed > G etherified; C-O stretching Lignin[1]; oils[3] ≈ 1175 C-O-C stretching; C-O stretching Cellulose and hemicelluloses[6]; oils[3] ≈ 1074 C-O stretching of secondary alcohol; C-O stretching of the ester methoxyl group and B-O-4 links in lignin Cellulose and hemicelluloses[1]; lignin[7] ≈ 1000 C-O stretching of primary alcohol Cellulose and hemicelluloses[1] ≈ 720, ≈ 760 (CH 2 )n out-of-plane angular deformation, n>4 Oils and waxes[3] [1] (^) Faix (1992). [2] (^) Faix (1991). [3] (^) Barbosa (2007). [4] (^) Fengel and Ludwig (1991). [5] (^) Lionetto et al. (2012). [6] (^) Pandey (1999). [7] (^) González-Pena and Hale (2011).
Infrared spectroscopy of the surface..: Lopes et al. Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 The peak intensities (height) at 3470 cm-1^ assigned to the OH groups decreased significantly to thermally-modified heartwood and sapwood (Figures 1 and 2). The heartwood and sapwood treated at 180ºC had a decrease in the order of 31% and 11%, respectively, whereas for the treatment at 200ºC was around 33% and 19%. Thus, the OH group decrease was more pronounced to heartwood in both temperatures. These decrease of the OH groups could be explained by its thermal degradation but also by different amount of water contained unmodified and thermally-modified heartwood and sapwood. The thermally-modified woods have lower equilibrium moisture content (EMC) compared to unmodified woods therefore a smaller amount of water while heartwood has a lower EMC than sapwood (Lopes 2018). The hemicelluloses are largely responsible for moisture absorption, but the accessible cellulose, nanocrystalline cellulose, lignin and crystalline cellulose also play an important role (Mohanty et al. 2000). Therefore, the relative contents of the cellulose crystallinity, amorphous region of cellulose and lignin were calculated (Table 2). The relative cellulose crystallinity was estimated by the ratio between 1474 cm-1^ and 897 cm-1^ peak intensities assigned to the C-H in lignin and C-H 1 deformation of cellulose glucose ring, respectively; and 1342 cm-1^ and 2900 cm-1^ peaks intensities assigned to C=O stretching in carbonyls and CH-sp^3 stretching (Ates et al. 2009, Tuong and Li 2010). For the amorphous region of cellulose was used the 2900 cm-1^ and 1074 cm-1^ peak intensities assigned to the CH-sp^3 and C-O stretching of secondary alcohol, respectively; and 2900 cm-1^ and 3474 cm-1^ peak intensities assigned to the CH-sp^3 and O-H stretching (Fackler et al. 2011, Temiz et al. 2006). Table 2. Relative values of cellulose crystallinity and amorphous regions, and lignin of unmodified and thermally-modified teak heartwood and sapwood. Wood Temperature (oC) Cellulose crystallinity C-H/CH 2 CH2/ C-H Amorphous region of cellulose C-H/C-O-C C-H/O-H Lignin 1474/897 1342/2900 2900/1074 2900/3474 1514/ Heartwood control 0,074 2,33 1,40 2,31 0, 180 0,099 2,51 1,23 2,24 0, 200 0,1 3,00 0,84 2,18 0, Sapwood control 0,13 2,78 1,98 4,58 0, 180 0,15 2,79 0,98 4,46 0, 200 0,17 3,32 0,92 4,31 0, The relative content of cellulose crystallinity of thermally-modified wood increased in comparison to unmodified wood (Table 2) which agrees with the results of other authors (Tuong and Li 2010). The cellulose crystallinity of thermally-modified heartwood increased 20.4% and 31.5% whereas in thermally-modified sapwood increased 7.65% and 9.65% for 180ºC and 200ºC, respectively (Table 2). Therefore, the increase in crystallinity cellulose was more important to the highest temperature (200ºC) and to heartwood. This increasing in cellulose crystallinity following thermal modification has been reported by various authors for different wood species. Bhuyian et al. (2000) studied the effect of the thermal modification on the cellulose crystallites of different wood species and pure cellulose under oven-dried and high moisture conditions by X-ray diffractometer and observed a rearrangement of the cellulose molecules in the amorphous regions leading to crystallization. The cellulose crystallinity was almost twice higher in moisture condition than oven-dried condition to wood; but pure cellulose had almost the same crystallization under both conditions. Thus, according to these authors, other components of cell wall such as xylose and mannose not degraded during thermal modification are involved in the crystallinity increase. Li et al. (2015) studied the steam-heat treated teak wood by FTIR and second derivative IR (SD-IR) spectroscopy and observed an increase in the stretching vibration of glucose ring, probably due to cleavage and dehydration of amorphous carbohydrates and/or crystallization of the paracrystalline region of cellulose, which may cause the increase of the proportion of crystalline cellulose.
Infrared spectroscopy of the surface..: Lopes et al. Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 peak intensities at 1730 cm-1^ are assigned to C=O stretching in oils and at 720 cm-1^ and 760 cm-1^ to CH 2 deformation in oils and waxes. These peak intensities were higher in heartwood and decreased following thermal modification. CONCLUSIONS This study permitted to observe the chemical modifications of the surfaces of thermally-modified teak heartwood and sapwood by FTIR spectroscopy. The thermal modification causes a relative increase in the degree of cellulose crystallinity and consequent reduction of the amorphous region of cellulose; and also a relative increase in the lignin content. The extractive content of the heartwood is higher than that of sapwood. The treatment reduced the quinone content, oils and waxes in the wood and this was enhanced with increasing temperature. Heartwood surface is more susceptible to degradation by heat than that of sapwood. REFERENCES Ates, S.; Akyildiz, M.H.; Ozdemir, H. 2009. Effects of heat treatment on calabrian pine ( Pinus brutia Ten.) wood. BioResources 4(3): 1032-1043. Awoyemi, L.; Jones, I.P. 2011. Anatomical explanations for the changes in properties of western red cedar ( Thuja plicata ) wood during heat treatment. Wood Sci Technol 45:261-267. Barbosa, L.C. DE A. 2007. Espectroscopia no infravermelho na caracterização de compostos orgânicos. UFV, Viçosa. Batista, D.C.; De Muniz, G.I.B.; Oliveira, J.T.S.; Paes, J.B.; Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood – part 1: cell wall polymers and extractives contents. Maderas-Cienc Tecnol 18(2):273-284. Bhuiyan, T.R.; Hirai, N.; Sobue, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431-436. Boonstra, M.J.; Tjeerdsma, B. 2006. Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff 64(3): 204-211. Christiansen, A.W. 1994. Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz als Roh- und Werkstoff 52:139-149. de Moura, L.F.; Brito, J.O.; Da Silva, F.G. 2012. Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne 18(3):449-455. Fabiyi, J.S.; Ogunleye, B.M. 2015. Mid-Infrared spectroscopy and dynamic mechanical analysis of heat-treated obeche ( Triplochiton scleroxulon ) wood. Maderas-Cienc Tecnol 17(1):5-16. Fackler, K.; Stevanic, J.S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. 2011. FTIR imaging microscopy to localize and characterize simultaneous and selective white-rot decay
Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 U n i v e r s i d a d d e l B í o - B í o within spruce wood cells. Holzforschung 65(3):411-420. Faix, O. 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21-27. Faix, O. 1992. Fourier transform infrared spectroscopy. In: LIN, S.Y.; DENCE, C.W. (ed.) Methods in lignin chemistry. Springer-Verlag, Germany. Fengel, D.; Ludwig, M. 1991. Possibilities and limits of FTIR spectroscopy characterization of the cellulose. Papier 45(2): 45-51. Gonçalves, A.; Schuchardt, U. 1999. Oxidation of organosolv lignins in acetic acid: Influence of oxygen pressure. Applied Biochemistry and Biotechnology 77:127-132. González-Pena, M.M.; Hale, M.D.C. 2011. Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45: 83-102. Haupt, M.; Leithoff, D.; Meier, D.; Puls, J.; Richter, H.G.; Faix, O. 2003. Heartwood extractives and natural durability of plantation grown teakwood ( Tectona grandis L.): a case study. Holz als Roh- und Werkstoff 61(6):473-474. Hill, C.A.S. 2006. Wood modification: Chemical, thermal and other processes. John Wiley & Sons, Ltd., England. Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. 2007. Lapachol: an overview. Arkivoc 145-171. Li, M.Y.; Cheng, S.C.; Li, D.; Wang, S.N.; Huang, A.M.; Sun, S.Q. 2015. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chemical Letters 26:221-225. Lionetto, F.; Sole, R.D.; Cannoletta, D.; Vasapollo, G.; Maffezzoli, A. 2012. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910-1922. Lopes, J.O. 2018. Physical-chemical characterization and surface wettability of the thermally- modified teak juvenile wood. Doctor Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil Lopes, J.O.; Garcia, R.A.; Nascimento, A.M.; Latorraca, J.V.F. 2014. Color uniformization of the young teak wood by heat treatment. Revista Árvore 38(3):561-568. Mohanty, A.K.; Misra, M.; Hinrichsen, G. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276/277(1):1-24. Moreira, R.Y.O.; Arruda, M.S.P.; Arruda, A.C.; Santos, L.S.; Müller, A.H.; Guilhon, G.M.S.P.; Santos, A.S.; Terezo, E. 2006. Antraquinonas e naftoquinonas do caule de um espécime de reflorestamento de Tectona grandis (Vernenaceae). Revista Brasileira de Farmacognosia 16(3):392-
Niamké, F.B.; Amusant, N.; Charpentier, J.-P.; Chaix, G.; Baissac, Y.; Boutahar, N.; Adima, A.A.; Kati-Coulibaly, S.; Jay-Allemand, C. 2011. Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood ( Tectona grandis L. f.). Annals of Forest Science 68:201-211. Nidavani, R.B.; Mhalaksmi, A.M. 2014. Teak ( Tectona grandis Linn.): renowned timber plant with potential medicinal values. International Journal of Pharmacy and Pharmaceutical Sciences 6(1):48-54.
Maderas. Ciencia y tecnología 20(4): 737 - 746, 2018 U n i v e r s i d a d d e l B í o - B í o Yalcin, M.; Sahin, H.I. 2015. Changes in the chemical structure and decay resistance of heat- treated narrow-leaved ash wood. Maderas-Cienc Tecnol 17(2):435-446. Yamamoto, K.; Simatupang, M.H.; Hashim, R. 1998. Caoutchouc in teak wood ( Tectona grandis ): Formation, location, influence on sunlight irradiation, hydrophobicity and decay resistance. Holz als Roh- und Werkstoff 56(3):201-20.