Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Aplicación de la Teoría de Conjuntos, Ejercicios de Matemáticas

El estudiante aplica la teoría de conjuntos para dar solución a problemas de la vida real.

Tipo: Ejercicios

2021/2022

Subido el 15/04/2023

nelson-delgado-7
nelson-delgado-7 🇨🇴

1 documento

1 / 11

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Aplicación de la Teoría de Conjuntos
Nelson David Delgado Rivera
Tutora
Luz Mery Rodríguez
Grupo
1264
Universidad Nacional Abierta y a Distancia- UNAD
Marzo- 2022
Tunja
pf3
pf4
pf5
pf8
pf9
pfa

Vista previa parcial del texto

¡Descarga Aplicación de la Teoría de Conjuntos y más Ejercicios en PDF de Matemáticas solo en Docsity!

Aplicación de la Teoría de Conjuntos

Nelson David Delgado Rivera

Tutora

Luz Mery Rodríguez

Grupo

Universidad Nacional Abierta y a Distancia- UNAD

Marzo- 2022

Tunja

Introducción

Los conjuntos son la agrupación de elementos ya sean números, letras, palabras,

símbolos, figuras geométricas, entre otros. La teoría de conjuntos es una rama de

la lógica matemática que estudia las propiedades y relaciones de los conjuntos. En

este trabajo daremos solución a cuatro ejercicios en donde evidenciaremos

algunas características que tienen los conjuntos y las operaciones que pueden

efectuarse entre ellos, las relaciones que pueden establecerse como lo la unión,

intersección, complemento u otro.

Objetivos

Objetivo general

Determinar la manera en la que se aplica la teoría de conjuntos

Objetivos específicos

 Indagar que es la teoría de conjuntos.

 Identificar las operaciones que se pueden establecer en los conjuntos.

 Dar solución a los ejercicios plateados en la guía aplicando los

conocimientos adquiridos.

A A ∩ B

B [ A −( A ∩ B ) ] ∪ B

A ∪ B

B

A

B

A

C

C

B

A

B

A

C

C

B

A

C

Determine y argumente si se cumple o no la igualdad entre las operaciones, de

acuerdo con las regiones sombreadas en los diagramas de Venn-Euler.

Una vez representado en el diagrama cada uno de los lados de la igualdad se

puede evidenciar que las gráficas son iguales, por lo tanto, se cumple la igualdad.

Ejercicio 3: Operaciones entre conjuntos

Defina los nombres de los conjuntos del diagrama de Venn-Euler, se sugiere que

se encuentren relacionados con el contexto académico.

U= Estudiantes perteneces a la escuela ECAPMA

A= Estudiantes matriculados en catedra Unadista

B= Estudiantes matriculados en pensamiento lógico y matemático

C= Estudiantes matriculados en química general

Con los datos dados en el diagrama de Venn-Euler escogido, realizar el

sombreado de cada una de las siguientes operaciones calcular.

( A ∩C ) ∪ ( B − C )

( A ∆ C )−( B ∩C )

C ∩ ( A ∆ B )

(𝐴∆𝐶) − (𝐵 ∩ 𝐶) = 5,7,9 n ((𝐴∆𝐶) − (𝐵 ∩ 𝐶)) = 3

Operación

C∩ (𝐴 △ 𝐵)

Respuesta

C = 6,8,9,

C∩ (𝐴 △ 𝐵) = 8,12 n (C∩ (𝐴 △ 𝐵)) = 2

B

U

A

10

7

5

6

12 8

9

11

C

U

A B

7 10

5

6

12

8

9

C

11

Operación

( A − C )

C

Respuesta

( A − C )

C

B = 10,8,7,

( A − C )

C

∩ 𝐵 = 6,8,10 n ( ( AC )

C

Ejercicio 4: Aplicación de la Teoría de Conjuntos

EJERCICIO A.

En un Hotel en Santa Marta, realizaron una encuesta a los huéspedes que

asistieron en el mes de diciembre acerca de la bebida que más consumen en el

Bar durante el día, los resultados obtenidos son los siguientes:

150 consumen la Piña colada

130 consumen jugos naturales

92 consumen agua

70 consumen piña colada y jugos naturales

30 consumen jugos naturales y agua

60 consumen piña colada y agua

10 consumen las tres bebidas.

B

A

U

7 10

5

8

6

12

9

11

C

Rta: 130 huéspedes consumen piña colada o jugos naturales, pero no agua

b. ¿Cuántos huéspedes consumen agua, pero no piña colada?

Rta: 32 huéspedes consumen agua, pero no piña colada

c. ¿Cuántos huéspedes consumen jugos naturales y agua, pero no piña colada?

Rta: 20 huéspedes consumen jugos naturales y agua, pero no piña colada

P J

U

40

60

30

10

20

50

12

A

U

J

P

40

30 60

10

50 20

12

A

d. ¿Cuántos huéspedes en total fueron encuestados?

Rta: 222 huéspedes en total fueron encuestados

Conclusiones

 Los conjuntos se pueden clasificar en finito, infinito o unitario

 La operación de conjuntos nos ayuda a identificar la relación que existe

entre estos.

 El cardinal es el número de elementos que contiene el conjunto.

Referencias

J

U

U

P

40

60

30

10

50 20

12

A