Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

surface integralssurface integralssurface integrals, Lecture notes of Mathematics

surface integralssurface integralssurface integralssurface integralssurface integralssurface integralssurface integralssurface integralssurface integralssurface integralssurface integrals

Typology: Lecture notes

2020/2021

Uploaded on 03/30/2022

william-leratakis
william-leratakis 🇨🇦

1 document

1 / 13

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
We
are
booking
for
parametricequatirepreseuh.mg
surfaces
.
{
"
lui
D=
?
Y
(
u
,
u
)
=
?
2
(
u
,
u
)
=
?
(
u
,
u
)
=
xlu
,
u
)
i
+
ylu
,
r
)
j
+
2
(
u
,
r
)
K
pf3
pf4
pf5
pf8
pf9
pfa
pfd

Partial preview of the text

Download surface integralssurface integralssurface integrals and more Lecture notes Mathematics in PDF only on Docsity!

We are

booking

for

parametricequatirepreseuh.mgsurfaces.

" lui D= ?

Y

( u

, u (^) ) =? (^2) ( u , u (^) ) = (^)?

( u , u ) = xlu, u)^ i^ + ylu,^ r) j

( u , r) K

☒ :^ a Sphere of radius (^) a { ✗ =^ asinclus y = (^) a soin ¢ sino 2 =^ acos ¢ ✓ (^) (¢ , G) = asinocoso-i-asi.no/sin0-j-acosQk

j'

Ë of radius^ a Ex '

: a

Sphere

  • centered (^) at (^) P " (% , (^) yo / 27 { ✗ =^ asinclus^
  • x. y = (^) a soin ¢ sino^

Yo z =^ acos ¢^ + Zo

Ex Plaines passing through^ a point P . and perpendiculaire to^ avatars ×"

minimis

#¥Ës. » L P (^) is perpendiculaire to (^) B Pis perpendiculaire to any

line in

B " any rector Jing

vi. F- o

for any^ rector in^ B J' • (F- (^) F) =o V-P-lx.y.pe/ → Lui (^) , riz , riz

• (x-^ Xo^ ,

y

_

Yo ,-2--47=

→ n,(x-xo)-na(y-yo)-nz(←Zo-

EI : P=

(l

, 2 , 3) À = < l ,

o

, o (^) > À =^ U , I , o> Find (^) the paramétrisation

of

the plane passing (^) through P and^ containing

the

rectus I and^ Î . ① (^) T' ✗ (^) v7 should^ be normal to^ that

plane

= | i

j

k p I (^) O (^) O I I^ I^ O I

✓(u

, u^ ) =^ alu

, v) il y

/u

, u) j

  • (^) Ku , u)^ K

O

O rv =

Luo (^) , vo) i +2¥ Luo , volj-F-ulu.is) te Rende : tangent curve of (^) grid curve^! ru =

JI

Luo (^) , vo) i + 0 £ (no , volj-F-ulu.is) k & If^ ru^ ✗ (^) vu -1-0 (^) S is (^) smooth the (^) tangent plane is^

the

plane containing ru, ru and (^) ru x^ ru is a^ normal^ vector^ to^ the^ tangent

plane.

: r=^ n' i-iij-u-zdkru-2uii-oj-k.ru -0 i (^) +2 ✓ (^) +2k The normal^ vector^ ni to the^

tangent

plane is : " (^) ' (^) "» ru x^ ru^ =/ i j k

Zu O^ I

I o^ zu^ o / = (^) - zu i^

  • Yuj +4Wh P = (^) (I , I^ , 3)^

, ✓ =/ → normal vector - Zi - 4J -14k quatar (^) of tangent plane^

d-

Pis -2(x

  • l ) - 41g - 1) (^) -1412 - 3) =^0 x +^ 2g

22+3 =^0

EI :

Sphere of

radius (^) a { x-asinocosoy-asinosi.no D= z =^ a^ ces § ¢ rolxvo =p ' ' j

le

acosdcoso-acosdsmo-asi.no//-asinOsin0asin0/casO-^0

a2sin20coso-i-is.in?cfsinO-j-a2sin0coscfk/rqXro-/--a4sin4#s0-- l-a4sinkfces.RO/--/a2srn0l Als) = sino / (^0 ) =

21T a

Z

GU-surfaaareao-fgrap.hu { ✗ =^ x y = y 2 = f- (x , (^) y) rx =

i +^

¥

le ry = j

¥yk rx ✗ ry (^) =/

i

j k l'o?^ ˧ / =

  • ¥ i - ¥ :

+ le

lrxxryt-F.IE?--yiT like (^) we (^) saws in section (^) 15.

Tangent

ædors DX tu = -2g

qui

auj

le = - Sin (^) u (^) Cos u i - sinus invj

  • (^) cos u k vu =^
  • ( Itosu) sinv (^) i + (Itosu ) cosuvj
  • (^) Ok .

→ Normal vector is

ru x (^) ru = |

i

j te

  • sinucosv - sinus
inv Cos

| ]

  • (Itosu)sinv l'+as (^) a)
asv

=

  • Sin u (Itosu) le SÇ as -5¥

o o / (^) tu✗^ tu / dudu = ¥[ /^ sinn^ ( Itosu)^ / dudu