Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Static of Rigid Bodies Problem Set, Exercises of Statics

Static of Rigid Bodies Problem Set

Typology: Exercises

2024/2025

Uploaded on 12/05/2024

angela-keizy-dela-vega
angela-keizy-dela-vega 🇵🇭

2 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2 cot(2k) dk
IF = e (1-3) - cot(2k)
IF = e
IF = e
IF = sin(2k)
2 ( ) In|sin(2k)|
IF = e (1-n)P(x)
IF = e -2 -cot(2k)
IF = e
1
2
In|sin(2k)|
dk
dx
dk
MAT
052
DELA VEGA, ANGELA KEIZY A.
BSCE2 - 02
SITUATION 1
1.1 & 1.2 dh
dk + P(k)h = Q(k)h
P(k) = -cot(2k)
Q(k) = csc(2k)
n = 3
n
y = ( (1-n) Q(x) IF dx)
1-n 1
IF
h = ( (1-3) csc(2k) sin(2k) dk)
1-3 1
sin (2k)
h = ( -2csc(2k) sin(2k) dk)
-2 1
sin (2k)
h = ( -2k + C )
-2 1
sin (2k)
h =
-2 -2k + C
sin (2k)
SITUATION 2
Pt = Poe kt
f(t) = 200e (0.002t)
100,000 = 200e(0.002t)
= e
(0.002t)
100,000
200
In(500) = In(e )
(0.002t)
In(500) = 0.002t
t = In(500)
0.02
t = 310.730 minutes
pf2

Partial preview of the text

Download Static of Rigid Bodies Problem Set and more Exercises Statics in PDF only on Docsity!

2 cot(2k) dk

IF = e ∫(1-3) - cot(2k)

IF = e

IF = e

IF = sin(2k)

2 ( ) In|sin(2k)|

IF = e ∫(1-n)P(x)

IF = e -2^ ∫-cot(2k)

IF = e ∫

1 2 In|sin(2k)| dk dx dk MAT 052 DELA VEGA, ANGELA KEIZY A. BSCE2 - 02 SITUATION 1 1.1 & 1. dh dk

  • P(k)h = Q(k)h P(k) = -cot(2k) Q(k) = csc(2k) n = 3 n

y 1-n^ = ( ∫(1-n) Q(x) IF dx)

IF

h 1-3^ = ( ∫(1-3) csc(2k) sin(2k) dk)

sin (2k)

h = ( ∫-2csc(2k) sin(2k) dk)

sin (2k)

h -2^ = 1 ( -2k + C )

sin (2k)

h -2^ = -2k + C

sin (2k)

SITUATION 2 Pt = Poe kt f(t) = 200e (0.002t) 100,000 = 200e(0.002t) = e (0.002t)

In(500) = In(e (0.002t)) In(500) = 0.002t t = In(500)

t = 310.730 minutes

SITUATION 4 = inflow rate − outflow rate 2L min dV dt dV dt dV dt

= inflow rate − outflow rate

8g min min V(t) = 2dt V(t) = 2t + C V(0) = 8L V(0) = 2 (0) + C = 8 V(t) = 2t + 8 t = 20 minutes V(20) = 2(20) + 8 V(20) = 48L Inflow of chemical = ( ) ( ) = outflow of chemical = ( ) ( ) 2g L

4L

min A(t) V(t)

4L

dA dt

A(t) V(t) dA dt = 8 -^ 2 A(t) (2t + 8) dA dt

2 A(t) t + 4 dy dx

  • P(t) y = Q(t) dA dt

2 A(t) t + 4 dA

( dt )

2 A(t) t + 4

dA dt +^ A = 8

t + 4 IF = e IF = e IF = t + 4 1

∫ t +4 dt

In(t+4) (t+4) + A = 8 (t+4) dA dt d dt

∫ [(t+4) A] =∫^ 8 (t+4)

(t+4) A = 4 (t+4) + C^2 (0+4) A(0) = 4 (0+4) + C

A(0) = 32

(32) (4) = 4 (16) + C

(128) = 64 + C

C= 64

4(t+4) + 64 t + 4 A(t) = 2 2 4(t+4) + 64 t + 4

A(20) =

Finding the amount of chemical after 20 mins A(20) = 20 min 4(20+4) + 64 20 + 4

A(20) =

A(20) =

A(20) =

A(20) = 98. 667 g A(20) V(20)

Q(20) =

98.667g 48L

Q(20) =

Q(20) = 2.

g L Finding the concentration of chemical after 20 mins 2 2 SITUATION 3 To = 40 °F Ts = 70 °F 60 °F to 61 °F in 2 minutes (from 10:07 to 10:09) T(t) = Ts + (To - Ts) e-kt 61 = 70 + (60 - 70) e -k(2) -9 = -10 e-2k In(0.9) = -2k K = - In(0.9) 2 K = 0. 61 = 70 + (60 - 70) e -0.053t 60 = 70 - 30 e -0.053t -10 = -30e -0.053t (^1) = e -0.053t 3 In( 1 ) = -0.053t 3 t = - t = 20.729 minutes

In ( ) 4.1 & 4.