Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Signals and Systems main formulas, Cheat Sheet of Signals and Systems

Main formulas for signals and systems

Typology: Cheat Sheet

2021/2022

Uploaded on 05/22/2025

Berillo17
Berillo17 🇮🇹

1 document

1 / 18

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Trasformata di Laplace
Linearit`a ( a, b 2IR )L[ax(t)+by(t)](s)=aX(s)+bY (s)s>max{sx,s
y}
Traslazione ( a2IR )L[x(ta)u(ta)](s)=easX(s)s>s
x
Modulazione ( a2IR )L[eatx(t)](s)=X(sa)s>a+sx
Riscalamento ( a>0)L[x(at)] (s)= 1
aXs
as > asx
Derivazione rispetto a sL[tnx(t)] (s)=(1)nX(n)(s)s>s
x
Derivazione rispetto a tL[x0(t)](s)=sX(s)x(0+)s>max{sx,s
x0}
L[x00(t)](s)=s2X(s)sx(0+)x0(0+)s>max{sx,s
x0,s
x00 }
Integrale della trasformata Z+1
s
X(r)dr =Lx(t)
t(s)s>s
x
Convoluzione L[(xy)(t)] = X(s)Y(s)s>max{sx,s
y}
Trasformata dell’integrale LZt
0
x(r)dr(s)= X(s)
ss>max{0,s
x}
x(t)X(s)=L[x(t)](s)sx
u(t)1
s0
eat (a2IR )1
saa
tn(n2IN )n!
sn+1 0
sin(at)(a2IR )a
s2+a20
cos(at)(a2IR )s
s2+a20
sinh(at)(a2IR )a
s2a2|a|
cosh(at)(a2IR )s
s2a2|a|
eat sin(bt)(a, b 2IR )b
(sa)2+b2a
eat cos(bt)(a, b 2IR )sa
(sa)2+b2a
sin t
tarctan 1
s0
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12

Partial preview of the text

Download Signals and Systems main formulas and more Cheat Sheet Signals and Systems in PDF only on Docsity!

Trasformata di Laplace

Linearit`a ( a, b 2 IR ) Lax(t) + by(t) = aX(s) + bY (s) s > max{s x , s y }

Traslazione ( a 2 IR ) Lx(t a)u(t a) = e

as X(s) s > sx

Modulazione ( a 2 IR ) L[e

at x(t)](s) = X(s a) s > a + sx

Riscalamento ( a > 0 ) L [x(at)] (s) =

1

a

X

⇣ s

a

s > as x

Derivazione rispetto a s L [t

n x(t)] (s) = (1)

n X

(n) (s) s > s x

Derivazione rispetto a t L[x

0 (t)](s) = sX(s) x(

) s > max{s x , s x 0 }

L[x

00 (t)](s) = s

2 X(s) sx(

) x

0 (

) s > max{s x , s x 0 , s x 00 }

Integrale della trasformata

Z

  • 1

s

X(r)dr = L

x(t)

t

(s) s > sx

Convoluzione L[(x ⇤ y)(t)] = X(s) Y (s) s > max{s x , s y }

Trasformata dell’integrale L

Z t

0

x(r)dr

(s) =

X(s)

s

s > max{ 0 , s x }

x(t) X(s) = Lx(t) sx

u(t)

1

s

0

e

at (a 2 IR)

1

s a

a

t

n (n 2 IN )

n!

s

n+

0

sin(at) (a 2 IR)

a

s

2

  • a

2

0

cos(at) (a 2 IR)

s

s 2

  • a 2

0

sinh(at) (a 2 IR)

a

s

2 a

2

|a|

cosh(at) (a 2 IR)

s

s 2 a 2

|a|

e

at sin(bt) (a, b 2 IR)

b

(s a)

2

  • b

2

a

e

at cos(bt) (a, b 2 IR)

s a

(s a)

2

  • b

2

a

sin t

t

arctan

1

s

0

Sviluppi in serie di MacLaurin

Funzione Sviluppo di McLaurin Intervallo di convergenza

e

x

  • 1 X

n=

x

n

n!

R = + 1

1

1 x

  • 1 X

n=

x

n ( 1 , 1)

log(1 x)

  • 1 X

n=

x

n

n

( 1 , 1]

arctan x

  • 1 X

n=

(1)

n

2 n + 1

x

2 n+ [ 1 , 1]

sin x

  • 1 X

n=

(1)

n

(2n + 1)!

x

2 n+ R = + 1

cos x

  • 1 X

n=

(1)

n

(2n)!

x

2 n R = + 1

sinh x

  • 1 X

n=

x

2 n+

(2n + 1)!

R = + 1

cosh x

  • 1 X

n=

x

2 n

(2n)!

R = + 1

(1 + x)

  • 1 X

n=

n

x

n R = 1

Serie di Fourier

f (x) ⇡ a 0 +

1 X

k=

ak cos

k

2 ⇡

T

x

  • bk sin

k

2 ⇡

T

x

,

a 0 =

1

T

Z T

0

f (x) dx, ak =

2

T

Z T

0

f (x) cos

k

2 ⇡

T

x

dx k 1 , bk =

2

T

Z T

0

f (x) sin

k

2 ⇡

T

x

dx k 1.

Z T

0

|f (x)|

2 dx = T a

2

0

T

2

1 X

k=

(a

2

k

  • b

2

k ) ( identit`a di Parseval )

424 Tables and Formulas

F u n d a m e n t a l limits

lim x^ = +00, lim x" = 0 , a > 0

lim x^ = 0, lim x^ = +(X), a < 0

^.^ a^x" +... + a i X + ao ^ a , ^.^ ^ , _ ^

x ^ ± o o bmX^ +... + biX + 6 o ^m a:->±oo

lim a^ = +CX), lim a^ = 0 , a > 1

a;—)-+oo X—)• —oo

lim a^ = 0, lim a^ = + o c , a < 1

rr—>+oo x—> —oo

lim log^ X — +0 0 , lim log^ x = —oo , a > I

X—>-+oo X—>-0+

lim log^ X = —oo , lim log^ x = +oo , a < 1

X—>-+oo X—>-0+

lim sin x , lim cos x , lim tan x do not exist

X—>-zbcx) X—^±0 0 x ^ i b o o

TT

lim tanx = +oo , VA: G Z , lim arctanx = ± —

x -. ( f + / c 7 r ) ^ ^ - ± o o 2

TT

lim arcsina: = ±— = arcsin(±l)

x-.±i 2 ^ ^

lim arccosx = 0 = arccos 1 , lim arccosx = TT = arccos(—1)

X—>- + l X—> — 1

, sinx ^ ,. 1 — cos a; 1

lim = 1, lim ^ = -

x-> 0 X x-^0 X"^ 2

lim fl + - ) ^ e " " , a G R , lim(l + x ) - = e

lim , a > 0 ; m particular, lim = 1

x->o X log a x-^^ X

c^ — 1 e*^ — 1

lim = log a, a > 0 ; in particular, lim = 1

x-^O X x - ^ 0 X

Tables and Formulas 425

Derivatives of elementary functions

/(^)

x^

sinx

cosx

tanx

a r f c i r i T

arrrrm T

arctan x

a^

loga 1^ 1

sinh X

cosh X

n^)

ax"^-^ , ^aeM.

cosx

— sin X

9 1

± 1 Laii X — „

COS^ X

v ^ r = ^

v^n^^

l + x 2

(log a) a^

(log a) X

cosh X

sinh X

Differentiation rules

(a/(x)+/35(x))'-a/'(x)+/35'(x)

(/(^)5(x))'

/^/(^)V

(gifix)))-

= f'{x)g{x) + f{x)g'{x)

r{x)9{x) - f{x)g'{x)

(fl(^))'

= g'{f{x))nx)

Tables and Formulas 427

Integrals of e l e m e n t a ry functions

/ ( ^ )

x^

X

sinx

cosx

e^

sinh X

cosh X

1 + ^ 2

x/^2Tri

J/(x)dx

— — - + c , ay^-

a + 1

log|x| + c

— cos X -- c

sin x + c

e^ + c

cosh X -{- c

sinh X + c

arctan x - h c

arcsin x + c

log(x + V x^ + 1 ) + c = sett sinh x + c

log(x - h v x^ — 1 ) + c = sett cosh x + c

I n t e g r a t i o n rules

j(af{x) +

j f{x)9\x)

J ^{x)

(3g{x) j dx = a / /(x) dx + / 3 / ^(x) dx

dx = f{x)g{x) - / /(x)5f(x)dx

= log|(^(x)|+c

j f{(p{x))Lp\x) dx = / f{y) dy where y = : (P(X)

Basic definitions and formulas

Sequences and series

Geometric sequence (p. 3):

lim

n→∞

q

n

0 if |q| < 1,

1 if q = 1,

+∞ if q > 1,

does not exist if q ≤ − 1

The number e (p. 3):

e = lim

n→∞

n

n

∞ ∑

k=

n!

Geometric series (p. 6):

∞ ∑

k=

q

k

converges to

1 − q

if |q| < 1 ,

diverges to + ∞ if q ≥ 1 ,

is indeterminate if q ≤ − 1

Mengoli’s series (p. 7):

∞ ∑

k=

(k − 1)k

Generalised harmonic series (p. 15):

∞ ∑

k=

k

α

converges if α > 1 ,

diverges if α ≤ 1

C. Canuto, A. Tabacco: Mathematical Analysis II, 2nd Ed.,

UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6,

© Springer International Publishing Switzerland 2015

Definitions and formulas 535

Fourier series

Fourier coefficients of a map f (p. 82):

a 0

2 π

2 π

0

f (x) dx

a k

π

2 π

0

f (x) cos kx dx , k ≥ 1

b k

π

2 π

0

f (x) sin kx dx , k ≥ 1

c k

2 π

2 π

0

f (x)e

−ikx dx , k ∈ ZZ

Fourier series of a map f ∈

C

2 π (p. 85):

f ≈ a 0

∞ ∑

k=

(a k cos kx + b k sin kx) ≈

+∞ ∑

k=−∞

c k e

ikx

Parseval’s formula (p. 91):

2 π

0

|f (x)|

2 dx = 2πa

2

0

  • π

+∞ ∑

k=

(a

2

k

  • b

2

k

) = 2π

+∞ ∑

k=−∞

|c k

2

Square wave (p. 85):

f (x) =

− 1 if −π < x < 0 ,

0 if x = 0, ±π ,

1 if 0 < x < π ,

f ≈

π

∞ ∑

m=

2 m + 1

sin(2m + 1)x

Rectified wave (p. 87):

f (x) = | sin x| , f ≈

π

π

∞ ∑

m=

4 m

2 − 1

cos 2mx

Sawtooth wave (p. 87):

f (x) = x , x ∈ (−π,π ) , f ≈

∞ ∑

k=

k

k+ sin kx

536 Definitions and formulas

Real-valued functions

Partial derivative (p. 157):

∂f

∂x i

(x 0 ) = lim

∆x→ 0

f (x 0

  • ∆x e i ) − f (x 0

∆x

Gradient (p. 157):

∇f (x 0 ) = grad f (x 0

∂f

∂x i

(x 0

1 ≤i≤n

Differential (p. 162):

df x 0

(∆x) = ∇f (x 0 ) · ∆x

Directional derivative (p. 163):

∂f

∂v

(x 0 ) = ∇f (x 0 ) · v =

∂f

∂x 1

(x 0 ) v 1

∂f

∂x n

(x 0 ) v n

Second partial derivative (p. 168):

2 f

∂x j ∂x i

(x 0

∂x j

∂f

∂x i

(x 0

Hessian matrix (p. 169):

Hf (x 0 ) = (h ij

1 ≤i,j≤n

with h ij

2 f

∂x j ∂x i

(x 0

Taylor expansion with Peano’s remainder (p. 172):

f (x) = f (x 0 ) + ∇f (x 0 ) · (x − x 0 ) +

1

2

(x − x 0 ) · Hf (x 0 )(x − x 0 ) + o(∥x − x 0 ∥

2 )

Curl in dimension 2 (p. 206):

curl f =

∂f

∂x 2

i −

∂f

∂x 1

j

Fundamental identity (p. 209):

curl grad f = ∇ ∧ (∇f ) = 0

Laplace operator (p. 211):

∆f = div grad f = ∇ · ∇f =

n ∑

j=

2 f

∂x

2

j

538 Definitions and formulas

Polar coordinates

From polar to Cartesian coordinates (p. 230):

Φ : [0, +∞) × R → R

2 , (r,θ ) .→ (x, y) = (r cos θ, r sin θ)

Jacobian matrix and determinant (p. 230):

JΦ(r,θ ) =

cos θ −r sin θ

sin θ r cos θ

, det JΦ(r,θ ) = r

Partial derivatives in polar coordinates (p. 231):

∂f

∂r

∂f

∂x

cos θ +

∂f

∂y

sin θ ,

∂f

∂θ

∂f

∂x

r sin θ +

∂f

∂y

r cos θ

∂f

∂x

∂f

∂r

cos θ −

∂g

∂θ

sin θ

r

∂f

∂y

∂g

∂r

sin θ +

∂f

∂θ

cos θ

r

Variable change in double integrals (p. 320):

Ω

f (x, y) dx dy =

Ω ′

f (r cos θ, r sin θ) r dr dθ

Cylindrical coordinates

From cylindrical to Cartesian coordinates (p. 233):

Φ : [0, +∞) × R

2 → R

3 , (r, θ, t) .→ (x, y, z) = (r cos θ, r sin θ, t)

Jacobian matrix and determinant (p. 233):

JΦ(r, θ, t) =

cos θ −r sin θ 0

sin θ r cos θ 0

, det JΦ(r, θ, t) = r

Partial derivatives in cylindrical coordinates (p. 233):

∂f

∂r

∂f

∂x

cos θ +

∂f

∂y

sin θ ,

∂f

∂θ

∂f

∂x

r sin θ +

∂f

∂y

r cos θ ,

∂f

∂t

∂f

∂z

∂f

∂x

∂f

∂r

cos θ −

∂f

∂θ

sin θ

r

∂f

∂y

∂f

∂r

sin θ +

∂f

∂θ

cos θ

r

∂f

∂z

∂f

∂t

Variable change in triple integrals (p. 328):

Ω

f (x, y, z) dx dy dz =

Ω

f (r cos θ, r sin θ, t) r dr dθ dt

Definitions and formulas 539

Spherical coordinates

From spherical to Cartesian coordinates (p. 234):

Φ : [0, +∞) × R

2 → R

3 ,

(r, ϕ,θ ) .→ (x, y, z) = (r sin ϕ cos θ, r sin ϕ sin θ, r cos ϕ)

Jacobian matrix (p. 234):

JΦ(r, ϕ,θ ) =

sin ϕ cos θ r cos ϕ cos θ −r sin ϕ sin θ

sin ϕ sin θ r cos ϕ sin θ r sin ϕ cos θ

cos ϕ −r sin ϕ 0

Jacobian determinant (p. 234):

det JΦ(r, ϕ,θ ) = r

2 sin ϕ

Partial derivatives in spherical coordinates (p. 233):

∂f

∂r

∂f

∂x

sin ϕ cos θ +

∂f

∂y

sin ϕ sin θ +

∂f

∂z

cos ϕ

∂f

∂ϕ

∂f

∂x

r cos ϕ cos θ +

∂f

∂y

r cos ϕ sin θ −

∂f

∂z

r sin ϕ

∂f

∂θ

∂f

∂x

r sin ϕ sin θ +

∂f

∂y

r sin ϕ cos θ

∂f

∂x

∂f

∂r

sin ϕ cos θ +

∂f

∂ϕ

cos ϕ cos θ

r

∂f

∂θ

sin θ

r sin ϕ

∂f

∂y

∂f

∂r

sin ϕ sin θ +

∂f

∂ϕ

cos ϕ sin θ

r

∂f

∂θ

cos θ

r sin ϕ

∂f

∂z

∂f

∂r

cos ϕ −

∂f

∂ϕ

sin ϕ

r

Variable change in triple integrals (p. 329):

Ω

f (x, y, z) dx dy dz =

Ω

f (r sin ϕ cos θ, r sin ϕ sin θ, r cos ϕ) r

2 sin ϕ dr dϕ dθ

Definitions and formulas 541

Integrals on curves and surfaces

Integral along a curve (p. 368):

γ

f =

b

a

f

γ(t)

∥γ

′ (t)∥ dt

Path integral (p. 375):

γ

f · τ =

γ

f τ

b

a

f

γ(t)

· γ

′ (t) dt

Integral on a surface (p. 378):

σ

f =

R

f

σ(u, v)

∥ν(u, v)∥ du dv

Flux integral (p. 384):

σ

f · n =

σ

f n

R

f

σ(u, v)

· ν(u, v) du dv.

Divergence Theorem (p. 391):

Ω

div f =

∂Ω

f · n

Green’s Theorem (p. 394):

Ω

∂f 2

∂x

∂f 1

∂y

dx dy =

∂Ω

f · τ

Stokes’ Theorem (p. 396):

Σ

(curl f ) · n =

∂Σ

f · τ

542 Definitions and formulas

Examples of quadrics

x

y

Ellipsoid

x

2

a

2

y

2

b

2

z

2

c

2

= 1

z

x

y

Hyperbolic paraboloid

z

c

= −

x

2

a

2

y

2

b

2

z

x

y

Elliptic paraboloid

z

c

=

x

2

a

2

y

2

b

2

z