

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
How to summarize data through frequency distributions, frequency histograms, and cumulative frequency graphs. A frequency distribution is a table that displays classes or intervals of data entries with a count of the number of entries in each class. Frequency histograms are a graphical representation of frequency distributions, while cumulative frequency graphs display the cumulative frequency of each class at its upper class boundary. Steps to construct a frequency distribution, an example, and instructions to create frequency histograms and cumulative frequency graphs.
What you will learn
Typology: Study notes
1 / 2
This page cannot be seen from the preview
Don't miss anything!
The main characteristics we will use to describe a data set are its center, its variability, and its shape. One way to see patterns in data is to make a graph. In this section, we will look at 3 ways to graphically summarize data: frequency distributions, frequency histograms, and a cumulative frequency graph.
A frequency distribution is a table that shows “classes” or “intervals” of data entries with a count of the number of entries in each class. The frequency f of a class is the number of data entries in the class. Each class will have a “lower class limit” and an “upper class limit” which are the lowest and highest numbers in each class. The “class width” is the distance between the lower limits of consecutive classes. The range is the difference between the maximum and minimum data entries.
Steps for constructing a frequency distribution from a data set
Example Make a frequency distribution for the following data, using 5 classes: 5 10 7 19 25 12 15 7 6 8 17 17 22 21 7 7 24 5 6 5 The smallest number is 5, and the largest is 25, so the range is 20. The class width will be 20/5 = 4, but we need to round up, so we will use 5. Our classes will be 5–9, 10–14, 15–19, 20–24, and 25–29. Then, counting the number of entries in each class, we get: Class Frequency 5–9 10 10–14 2 15–19 4 20–24 3 25–29 1 Note that the sum of the frequencies is 20, which is the same as number of data entries that we had.
You can add more information to your frequency distribution table. The “midpoint” (or “class mark”) of each class can be calculated as:
Midpoint =
Lower class limit + Upper class limit 2
The “relative frequency” of each class is the proportion of the data that falls in that class. It can be calculated for a data set of size n by:
Relative frequency = Class frequency Sample size
f n
The “cumulative frequency” is the sum of the frequencies of that class and all previous classes.
Example Add the midpoint of each class, the relative frequency, and the cumulative frequency to previous frequency table. Class Frequency Midpoint Relative frequency Cumulative frequency 5–9 10 7 0.5 10 10–14 2 12 0.1 12 15–19 4 17 0.2 16 20–24 3 22 0.15 19 25–29 1 27 0.05 20
A frequency histogram is a graphical way to summarize a frequency distribution. It is a bar graph with the following properties:
Example Construct a frequency histogram for the data considered before. Done in class
A cumulative frequency graph, or ogive is a line graph displaying the cumulative frequency of each class at its upper class boundary. The upper boundaries are marked on the horizontal axis, and the cumulative frequencies are marked on the vertical axis. The graph should start at (or just before) the lower boundary of the first class (where the cumulative frequency is zero), and end at the upper boundary of the last class. The graph should be increasing from left to right, and the points should be evenly spaced along the horizontal axis.
Example Construct an ogive for the data considered before. Done in class