
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A talk by Rajan Gupta from Los Alamos National Laboratory on high precision results on matrix elements of quark bilinear operators between nucleon states using lattice QCD. The talk covers a number of exciting quantities at the intersection of nuclear and particle physics, including the axial charge, scalar and tensor charges, vector and axial vector form factors, and flavor diagonal charges. The results have implications for neutrino oscillation experiments and the cross-section of dark matter with nuclear targets.
Typology: Lecture notes
1 / 1
This page cannot be seen from the preview
Don't miss anything!
This talk will present a number of high precision results on matrix elements of quark bilinear operators between nucleon states using lattice QCD. From these, we extract a number of exciting quantities, at the intersection of nuclear and particle physics. We show that the axial charge $g_A$, a fundamental parameter encapsulating the weak interaction of nucleons, is calculated with a few percent accuracy. Results for the scalar and tensor charges, g_S and g_T, which combined with precision neutron decay distribution probe novel scalar and tensor interactions at the TeV scale. Vector form factors are probed in electron scattering, while axial vector form factors are used in the calculation of the cross-section of neutrinos on nuclear targets. These energy dependent cross-sections are needed to determine the neutrino flux, an important systematic in neutrino oscillation experiments. Finally we will present results for flavor diagonal charges that provide the contribution of the quark spin to the nucleon spin, the quark EDM to the neutron EDM, and needed to determine the cross-section of dark matter with nuclear targets.