Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

PRA-UTS KUIS STRUKTUR DISKRIT, Quizzes of Discrete Structures and Graph Theory

Simply just quiz for exam prep.

Typology: Quizzes

2023/2024

Uploaded on 11/04/2024

patrick-vyto-pardamean-simbolon
patrick-vyto-pardamean-simbolon 🇮🇩

1 document

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Kuis Struktur Diskrit
Sifat: Open
Rabu, 6 Oktober 2021 15:00 – 17:00 WIB
Instruksi:
1. Menyalakan kamera saat mengerjakan kuis.
2. Kuis dikerjakan dengan ditulis tangan.
3. Unggah jawaban kuis yang telah di foto/pindai dengan format NIM_Nama.pdf pada Ms. Teams.
4. Kerjakan soal-soal berikut. Saat pengerjaan soal boleh tidak berurutan.
The Foundations: Logic and Proofs
1. Show the Equivalence law
𝑝 𝑞
(
𝑝 𝑞
)
(
𝑞 𝑝
) by constructing a truth table for
each side of the implication and showing these two truth tables are equivalent. Then use
the Implication law to rewrite
𝑝 𝑞
(
𝑝 𝑞
)
(
𝑞 𝑝
) in terms of
,
, and
~
only.
2. Simplify the following logical expressions with the laws of logic.
a.
~(p q) (~p q) (~q q)
b. [p
(q r)
].
.(~p
r
)
Sets, Relations, & Functions
3. Using the Venn diagram find the sets
A, B, A B, A B, A!, B!
, (
A B
)
!,
(
A B
)
!, A! B,
and
A B!
,
A B
,
B A
.
4. The below directed graph represents a relation. Find the domain and range of the relation.
Then write the relation as a subset of the Cartesian product of the domain and range.
5. Let A = {1, 2, 3, 4, 5, 6} with the relation given by
R = {(1, 1), (1, 5), (5, 1), (5, 5), (2, 2), (2, 4), (2, 6)
(4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6), (3, 3)}
A. × .A
.
Show this relation is an equivalence relation. Then find the equivalence classes that
partition the set A.
pf2

Partial preview of the text

Download PRA-UTS KUIS STRUKTUR DISKRIT and more Quizzes Discrete Structures and Graph Theory in PDF only on Docsity!

Kuis Struktur Diskrit Sifat: Open Rabu, 6 Oktober 2021 15:00 – 17:00 WIB Instruksi:

  1. Menyalakan kamera saat mengerjakan kuis.
  2. Kuis dikerjakan dengan ditulis tangan.
  3. Unggah jawaban kuis yang telah di foto/pindai dengan format NIM_Nama.pdf pada Ms. Teams.
  4. Kerjakan soal-soal berikut. Saat pengerjaan soal boleh tidak berurutan. The Foundations: Logic and Proofs
  5. Show the Equivalence law 𝑝 ↔ 𝑞 ≡ (𝑝 → 𝑞) ∧ (𝑞 → 𝑝) by constructing a truth table for each side of the implication and showing these two truth tables are equivalent. Then use the Implication law to rewrite 𝑝 ↔ 𝑞 ≡ (𝑝 → 𝑞) ∧ (𝑞 → 𝑝) in terms of ∧, ∨, and ~ only.
  6. Simplify the following logical expressions with the laws of logic. a. ~(p ∧ q) ∧ (~p ∨ q) ∧ (~q ∨ q) b. [p ∨ (q ∧ r)] ∧ (~p∨ r) Sets, Relations, & Functions
  7. Using the Venn diagram find the sets A, B, A ∪ B, A ∩ B, A!, B!, (A ∪ B)!, (A ∩ B)!, A!^ ∪ B, and A ∪ B!, A − B, B − A.
  8. The below directed graph represents a relation. Find the domain and range of the relation. Then write the relation as a subset of the Cartesian product of the domain and range.
  9. Let A = {1, 2, 3, 4, 5, 6 } with the relation given by R = {(1, 1), (1, 5), (5, 1), (5, 5 ), (2, 2 ), (2, 4), (2, 6 ) (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6), (3, 3)} ⊂ A × A. Show this relation is an equivalence relation. Then find the equivalence classes that partition the set A.

Algorithms and Complexity

  1. What is the dominant operation in the following algorithm? What is the time complexity function of this algorithm?