Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

physics final exam cheat sheet, Cheat Sheet of Physics

Physics 111 General Physics I: Final Exam Formula Sheet

Typology: Cheat Sheet

2018/2019

Uploaded on 09/02/2019

agrata
agrata 🇺🇸

4

(7)

258 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Physics 111 General Physics I
Final Exam Formula Sheet
speedave = distance/ t
Linear Motion (Constant a): Rotational Motion (Constant α):
vave = x / t = (vi + vf) / 2 ωave = ∆θ / t = (ωi + ωf) / 2
aave = v / t αave = ∆ω / t
v = vi + a t ω = ωi + α t
vf
2 – vi
2 = 2 a x ωf
2ωi
2 = 2 α ∆θ
x = vave t = (vi + vf) t /2 ∆θ = ωave t = (ωi + ωf) t / 2
x = vi t + ½ a t2 ∆θ = ωi t + ½ α t2
Fnet = ma τnet = I α
Uniform Circular Motion: Projectile Motion:
acp = v2 / R= ω 2 / R x = x0 + v0,x t
Fcp = m v2 / R = m ω 2 / R y = y0 + v0,y t – ½ g t2
Forces: Work, Energy and Power:
Fnet = ma K = ½ mv2
fk = µk N Ug = mgh
fs µs N Uspring = ½ k x 2
Fspring = – k x Wnet = K = Fparallel d = Fd cos θ
Fg = Gm1m2 / r2 W
non-conservative = (K + U) = E
G = 6.67 × 10-11 N·m2/kg2 E= K + U = constant , if Wnon-conservative=0
g = 9.81 m/s2 P = W / t
Quadratic Formula: Center of Mass:
x = – b ± (b2 – 4ac) rCoM = ( mi ri ) / ( mi )
2a v
CoM = ( mi vi ) / ( mi ) = psystem / ( mi )
Momentum and Impulse: Angular Momentum:
p = mv L = I ω
I = p = Faverage t Iparticles= mi ri
2
τ = F r
If Fextenal =0, psystem = mi vi =constant τnet =L / t = I α
(collisions) If τextenal =0 , Lsystem = I ω =constant
Linear & Rotational Variables:
s = R ∆θ
v = R ω constant speed rotation: T = 2 π R/v = 2π / ω
atan = R α
Physics Final Exam Cheat Sheet
pf2

Partial preview of the text

Download physics final exam cheat sheet and more Cheat Sheet Physics in PDF only on Docsity!

Physics 111 General Physics I Final Exam Formula Sheet speed (^) ave = distance/ ∆t Linear Motion (Constant a): Rotational Motion (Constant α): v (^) ave = ∆x / ∆t = (v (^) i + v (^) f ) / 2 ωave = ∆θ / ∆t = (ωi + ωf ) / 2 aave = ∆v / ∆t αave = ∆ω / ∆t

v = v (^) i + a t ω = ωi + α t v (^) f^2 – v (^) i^2 = 2 a ∆x ωf^2 – ωi^2 = 2 α ∆θ ∆x = v (^) ave t = (v (^) i + v (^) f ) t /2 ∆θ = ωave t = (ωi + ωf ) t / 2 ∆x = v (^) i t + ½ a t 2 ∆θ = ωi t + ½ α t 2 F net = m a τnet = I α

Uniform Circular Motion: Projectile Motion: acp = v 2 / R= ω 2 / R x = x 0 + v (^) 0,x t F (^) cp = m v 2 / R = m ω 2 / R y = y 0 + v (^) 0,y t – ½ g t 2

Forces: Work, Energy and Power: F net = m a K = ½ mv 2 f (^) k = μ (^) k N Ug = mgh f (^) s ≤ μ (^) s N U (^) spring = ½ k ∆x 2 F spring = – k ∆x W (^) net = ∆K = F parallel d = Fd cos θ F g = Gm 1 m 2 / r 2 W (^) non-conservative = ∆(K + U) = ∆ E G = 6.67 × 10 -11^ N·m 2 /kg 2 E= K + U = constant , if W (^) non-conservative = g = 9.81 m/s 2 P = W / t

Quadratic Formula: Center of Mass: x = – b ± √ (b 2 – 4ac) r CoM = ( ∑mi r i ) / ( ∑ mi ) 2a v CoM = ( ∑mi v i ) / ( ∑ mi ) = p (^) system / ( ∑ mi )

Momentum and Impulse: Angular Momentum: p = m v L = I ω I = ∆ p = F average t I (^) particles= ∑mi r (^) i^2 τ = F r┴ If F extenal = 0 , p (^) system = ∑mi v i =constant τnet =∆L / ∆t = I α (collisions) If τextenal = 0 , L system = ∑ I ω =constant

Linear & Rotational Variables: s = R ∆θ v = R ω constant speed rotation: T = 2 π R/v = 2π / ω atan = R α

Sound and waves: Simple Harmonic Motion: v (^) sound in air = 340 m/s T = 2π √(m/k) (mass on a spring) I = Energy /(Area*t) = Power / Area T = 2π √(L/g) (simple pendulum) Intensity ~ Amplitude^2 f = 1 / T β = (10 dB) log (I / I 0 ) ω = 2 π f =2 π /T I 0 = 10 -12^ W/m^2 E=½ k A 2 v = λf x=A cos(ωt); v= – A ω sin(ωt) f = 1 / T F= – kx; a=F/m= – A ω^2 cos(ωt) v (^) wave on string = √(F / μ), μ = m/L K=½ m v 2 = ½ K A 2 sin 2 (ωt) Nth^ Harmonic wavelength on a string: NλN =2L U=½ k x 2 = ½ k A^2 cos 2 (ωt) Nth^ Harmonic frequency on a string: fN =Nv/2L v (^) max= A ω ; amax= A ω^2

Doppler Effect:

P = F / A Thermodynamics: Fluids: ∆L = α L 0 ∆T ρ = m / V ∆V = β V 0 ∆T, for solid β =3 α P = P (^) atm + ρgh Q = C ∆T = m c (Tf –Ti ) P (^) atm = 1.013 × 10 5 Pa 1 cal = 4.186 J; 1Cal=1000 cal F (^) b = ρfluid V\sub g Qconduction / t = k A (∆T/L) A1v 1 = A 2 v 2 Qradiation / t = e σ Α (T^4 –T^4 surrounding ) P + ½ρv 2 + ρgy = constant Heat needed for phase change Q = m L

Temperature Conversions: ∆S= ∆Q/T T=TK = TC + 273.15 Heat Engine: TC = (5/9) [T (^) F – 32] W = Q (^) h – Q (^) c TF = (9/5) TC + 32 e = W / Q (^) h = 1– Qc / Qh ≤ e (^) max = 1– Tc / T (^) h Carnot’s Engine: Q (^) c / Qh = Tc / Th Refrigerator or Heat Pump: W = Qh – Q (^) c = Q (^) h (1– Qc / Qh) Ideal Heat pump: Qc / Qh = Tc / Th Ideal Gas Law: COP = Qc / W or COP=Qh / W PV = NkT = nRT R = 8.31 J / (mol·K) k = 1.38 × 10 –23^ J/K Uinternal = (3/2) NkT =(3/2) nRT ∆ Uinternal =Q – W W=P ∆V