Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Notes on Computer Components and Operations Crib Sheet | ECSE 2610, Study notes of Electrical and Electronics Engineering

Material Type: Notes; Class: CPTR COMPONENTS & OPER; Subject: Electrical & Comp. Sys. Engr.; University: Rensselaer Polytechnic Institute; Term: Unknown 2012;

Typology: Study notes

2011/2012

Uploaded on 02/17/2012

koofers-user-1mp
koofers-user-1mp 🇺🇸

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Computer Components and Operations Crib Sheet
Powers of 2
21 = 2
28 = 256
215 = 32768
22 = 4
29 = 512
216 = 65536
23 = 8
210 = 1024
217 = 131072
24 = 16
211 = 2048
218 = 262144
25 = 32
212 = 4096
219 = 524288
26 = 64
213 = 8192
220 = 1048576
27 = 128
214 = 16384
Decimal Binary 2’s Complement
57/2 = 28 R 1 -N = 2n N
28/2 = 14 R 0 -N = [(2n 1) N] + 1
14/2 = 7 R 0 e.g.
7/2 = 3 R 1 ((2n - 1) - N) = 0010
3/2 = 1 R 1 -N = ((2n - 1) - N) + 1
1/2 = 0 R 1 -N = 1011
5710 = 1110012 8-bit: [-128, 127]
Hexadecimal Binary
AB5116 = 1010 1011 0101 00012
Binary Addition Bin Subtraction
C + X + Y = Z + C B - X - Y = Z - B
0 + 0 + 0 = 0 + 0 0 - 0 - 0 = 0 - 0
0 + 0 + 1 = 1 + 0 0 - 0 - 1 = 1 - 1
0 + 1 + 0 = 1 + 0 0 - 1 - 0 = 1 - 0
0 + 1 + 1 = 0 + 1 0 - 1 - 1 = 0 - 0
1 + 0 + 0 = 1 + 0 1 - 0 - 0 = 1 - 1
1 + 0 + 1 = 0 + 1 1 - 0 - 1 = 0 - 1
1 + 1 + 0 = 0 + 1 1 - 1 - 0 = 0 - 0
1 + 1 + 1 = 1 + 1 1 - 1 - 1 = 1 - 1
Dual
F*(X,Y,0,1,+,) = F(X,Y,1,0,,+)
Replace AND by OR
Replace OR by AND
Replace 0 by 1
Replace 1 by 0
Literals are left unchanged
Boolean Laws
1) X + 0 = X 1’) X 1 = X
2) X + 1 = 1 2’) X ∙ 0 = 0
3) X + X = X 3’) X ∙ X = X
4) (X’)’ = X
5) X + X’ = 1 5’) X ∙ X’ = 0
6) X + Y = Y + X 6’) X ∙ Y = Y ∙ X
7) (X + Y) + Z = X + (Y + Z)
7’) (X ∙ Y) ∙ Z = X ∙ (Y ∙ Z)
8) X ∙ (Y + Z) = (X ∙ Y) + (X ∙ Z)
8’) X + (Y ∙ Z) = (X + Y) ∙ (X + Z)
9) X + (X ∙ Y) = X 9’) X ∙ (X + Y) = X
10) (X ∙ Y) + (X ∙ Y’) = X
10’) (X + Y) ∙ (X + Y’) = X
11) (X + Y’) ∙ Y = X ∙ Y
11’) (X ∙ Y’) + Y = X + Y
12) (X1 + X2 + … + Xn)’ = X1’ ∙ X2’ ∙ … ∙ Xn
12’) (X1 X2 … ∙ Xn)’ = X1’ + X2’ + … + Xn
13) {F(X1,X2,…,Xn,0,1,+,∙)}’ =
{F(X1’,X2’,…,Xn’,1,0, ,+)}
14) (X + Y) (X’ + Z) = (X ∙ Z) + (X’ ∙ Y)
14’) (X ∙ Y) + (X’ ∙ Z) = (X + Z) ∙ (X’ + Y)
15) (X ∙ Y) + (Y ∙ Z) + (X’ ∙ Z) = (X ∙ Y) + (X’ ∙ Z)
15’) (X + Y) ∙ (Y + Z) ∙ (X’ + Z) = (X + Y) ∙ (X’ + Z)
Minterms and Maxterms
Row
X
Y
Z
Minterm
0
0
0
0
X’Y’Z’
1
0
0
1
X’Y’Z
2
0
1
0
X’YZ’
3
0
1
1
X’YZ
4
1
0
0
XY’Z’
5
1
0
1
XY’Z
6
1
1
0
XYZ’
7
1
1
1
XYZ
Minterm = 1
Maxterm = 0
Karnaugh Maps
B
00
01
11
10
00
M0
M4
M12
M8
01
M1
M5
M13
M9
D
C
11
M3
M7
M15
M11
10
M2
M6
M14
M10
A
Parity Codes
Odd Parity add 0 or 1 to data bits so total #
of 1s is ODD
Even Parity add 0 or 1 to data bits so total #
of 1s is EVEN
Hamming Codes
Hamming distance d = # of 1s in XOR of
two codewords
Code word b4b3b2b1
Message b4b3b2x4b1x2x1
X1 checks bits b4b2b1 for EVEN parity
X2 checks bits b4b3b1 for EVEN parity
X3 checks bits b4b3b2 for EVEN parity
Syndrome S4S2S1 = bit # of error
S1 checks bits b4b2b1x1 for EVEN parity
S2 checks bits b4b2b1x2 for EVEN parity
S4 checks bits b4b3b2x4 for EVEN parity
Quine-McCluskey Algorithm
F(A,B,C,D) = ΣA,B,C,D (1,2,3,4,5,7,9,15)
Dec
Bin
Dec
Bin
Dec/Bin
1
0001*
1,3
00X1*
1,3,5,7
2
0010*
1,5
0X01*
0XX1
4
0100*
1,9
X001
3
0011*
2,3
001X
5
0101*
4,5
010X
9
1001*
3,7
0X11*
7
0111*
5,7
01X1*
15
1111*
7,15
X111
1
2
3
4
5
7
9
15
0XX1
P
P
P
P
X001
P
<-
--
--
--
--
P
001X
|
P
P
|
|
010X
|
|
P
P
|
X111
|
|
|
P
<
P
F = B’∙C’∙D’ + A’∙B’∙C + A’∙B∙C’ + B∙C∙D.
CMOS
NMOS PMOS
drain so urce
gate gate
source drain
H = on = short circuit L = on = short circuit
L = off = open circuit H = off = open circuit
Inverter NAND
NOR
Espresso
Input file:
#comment
.i 3 # no. of input variables
.o 3 # no. of output variables
000 001 # truth table
001 010
010 011
011 100
100 000
101 ---
110 ---
111 ---
Command line:
C:\>espresso input.txt
Output:
##comment
.i 3 # no. of input variables
.o 3 # no. of output variables
.p 4 # no. of rows (optional)
0-0 001 # bo
-11 100 # b2
-01 010 # b1
-10 010 # b1
.e # end of output
Expressions:
b2 = a1a0
b1 = a1a0 + a1a0
b0 = a2a0
Vin Vout
Vcc
0
Q2
Q1
Vcc
0
Q2
Q3
Q1
Z
Q4
B
A
Vcc
0
Q1
Q2 Q4
Q3
Z
A
B
pf2

Partial preview of the text

Download Notes on Computer Components and Operations Crib Sheet | ECSE 2610 and more Study notes Electrical and Electronics Engineering in PDF only on Docsity!

Computer Components and Operations Crib Sheet

Powers of 2 21 = 2 28 = 256 215 = 32768 22 = 4 29 = 512 216 = 65536 23 = 8 210 = 1024 217 = 131072 24 = 16 211 = 2048 218 = 262144 25 = 32 212 = 4096 219 = 524288 26 = 64 213 = 8192 220 = 1048576 27 = 128 214 = 16384

DecimalBinary 2’s Complement 57/2 = 28 R 1 -N = 2n^ – N 28/2 = 14 R 0 -N = [(2n^ – 1) – N] + 1 14/2 = 7 R 0 e.g. 7/2 = 3 R 1 ((2n^ - 1) - N) = 0010 3/2 = 1 R 1 -N = ((2n^ - 1) - N) + 1 1/2 = 0 R 1 -N = 1011 5710 = 111001 2 8-bit: [-128, 127]

HexadecimalBinary AB51 16 = 1010 1011 0101 0001 2

Binary Addition Bin Subtraction C + X + Y = Z + C B - X - Y = Z - B 0 + 0 + 0 = 0 + 0 0 - 0 - 0 = 0 - 0 0 + 0 + 1 = 1 + 0 0 - 0 - 1 = 1 - 1 0 + 1 + 0 = 1 + 0 0 - 1 - 0 = 1 - 0 0 + 1 + 1 = 0 + 1 0 - 1 - 1 = 0 - 0 1 + 0 + 0 = 1 + 0 1 - 0 - 0 = 1 - 1 1 + 0 + 1 = 0 + 1 1 - 0 - 1 = 0 - 1 1 + 1 + 0 = 0 + 1 1 - 1 - 0 = 0 - 0 1 + 1 + 1 = 1 + 1 1 - 1 - 1 = 1 - 1

Dual F*(X,Y,0,1,+,∙) = F(X,Y,1,0,∙,+) Replace AND by OR Replace OR by AND Replace 0 by 1 Replace 1 by 0 Literals are left unchanged

Boolean Laws

  1. X + 0 = X 1’) X ∙ 1 = X
  2. X + 1 = 1 2’) X ∙ 0 = 0
  3. X + X = X 3’) X ∙ X = X
  4. (X’)’ = X
  5. X + X’ = 1 5’) X ∙ X’ = 0
  6. X + Y = Y + X 6’) X ∙ Y = Y ∙ X
  7. (X + Y) + Z = X + (Y + Z) 7 ’) (X ∙ Y) ∙ Z = X ∙ (Y ∙ Z)
  8. X ∙ (Y + Z) = (X ∙ Y) + (X ∙ Z) 8’) X + (Y ∙ Z) = (X + Y) ∙ (X + Z)
  9. X + (X ∙ Y) = X 9’) X ∙ (X + Y) = X
  10. (X ∙ Y) + (X ∙ Y’) = X 10’) (X + Y) ∙ (X + Y’) = X
  11. (X + Y’) ∙ Y = X ∙ Y 11’) (X ∙ Y’) + Y = X + Y
  12. (X 1 + X 2 + … + Xn)’ = X 1 ’ ∙ X 2 ’ ∙ … ∙ Xn’ 12’) (X 1 ∙ X 2 ∙ … ∙ Xn)’ = X 1 ’ + X 2 ’ + … + Xn’
  13. {F(X 1 ,X 2 ,…,Xn,0,1,+,∙)}’ = {F(X 1 ’,X 2 ’,…,Xn’,1,0, ∙,+)}
  14. (X + Y) ∙ (X’ + Z) = (X ∙ Z) + (X’ ∙ Y) 14’) (X ∙ Y) + (X’ ∙ Z) = (X + Z) ∙ (X’ + Y)
  15. (X ∙ Y) + (Y ∙ Z) + (X’ ∙ Z) = (X ∙ Y) + (X’ ∙ Z) 15’) (X + Y) ∙ (Y + Z) ∙ (X’ + Z) = (X + Y) ∙ (X’ + Z)

Minterms and Maxterms Row X Y Z Minterm Maxterm 0 0 0 0 X’∙Y’∙Z’ X+Y+Z 1 0 0 1 X’∙Y’∙Z X+Y+Z’ 2 0 1 0 X’∙Y∙Z’ X+Y’+Z 3 0 1 1 X’∙Y∙Z X+Y’+Z’ 4 1 0 0 X∙Y’∙Z’ X’+Y+Z 5 1 0 1 X∙Y’∙Z X’+Y+Z’ 6 1 1 0 X∙Y∙Z’ X’+Y’+Z 7 1 1 1 X∙Y∙Z X’+Y’+Z’ Minterm = 1 Maxterm = 0

Karnaugh Maps B 00 01 11 10 00 M 0 M 4 M 12 M 8 01 M 1 M 5 M 13 M (^9) D C 11 M^3 M^7 M^15 M^11 10 M 2 M 6 M 14 M 10

A

Parity Codes Odd Parity  add 0 or 1 to data bits so total # of 1s is ODD Even Parity add 0 or 1 to data bits so total # of 1s is EVEN

Hamming Codes Hamming distance  d = # of 1s in XOR of two codewords

Code word b 4 b 3 b 2 b 1 Message b 4 b 3 b 2 x 4 b 1 x 2 x 1

X 1 checks bits b 4 b 2 b 1 for EVEN parity X 2 checks bits b 4 b 3 b 1 for EVEN parity X 3 checks bits b 4 b 3 b 2 for EVEN parity

Syndrome S 4 S 2 S 1 = bit # of error S 1 checks bits b 4 b 2 b 1 x 1 for EVEN parity S 2 checks bits b 4 b 2 b 1 x 2 for EVEN parity S 4 checks bits b 4 b 3 b 2 x 4 for EVEN parity

Quine-McCluskey Algorithm F(A,B,C,D) = ΣA,B,C,D (1,2,3,4,5,7,9,15) Dec Bin Dec Bin Dec/Bin 1 0001* 1,3 00X1* 1,3,5, 2 0010* 1,5 0X01* 0XX 4 0100* 1,9 X 3 0011* 2,3 001X 5 0101* 4,5 010X 9 1001* 3,7 0X11* 7 0111* 5,7 01X1* 15 1111* 7,15 X

1 2 3 4 5 7 9 15 0XX1 P P P P X001 P <- -- -- -- -- P 001X | P P | | 010X | | P P | X111 | | | P < P F = B’∙C’∙D’ + A’∙B’∙C + A’∙B∙C’ + B∙C∙D.

CMOS

NMOS PMOS

drain source gate gate

source drain H = on = short circuit L = on = short circuit L = off = open circuit H = off = open circuit

Inverter NAND

NOR

Espresso Input file: #comment .i 3 # no. of input variables .o 3 # no. of output variables 000 001 # truth table 001 010 010 011 011 100 100 000 101 --- 110 --- 111 ---

Command line: C:>espresso input.txt

Output: ##comment .i 3 # no. of input variables .o 3 # no. of output variables .p 4 # no. of rows (optional) 0-0 001 # bo -11 100 # b 2 -01 010 # b 1 -10 010 # b 1 .e # end of output

Expressions: b 2 = a 1 a 0 b 1 = a 1 ’a 0 + a 1 a 0 ’ b 0 = a 2 ’a 0 ’

Vin Vout

Vcc

0

Q

Q

Vcc

0

Q

Q

Q

Z

Q

B

A

Vcc

0

Q

Q2 Q

Q

Z A

B

Computer Components and Operations Crib Sheet

Latches and Flip Flops

Latches are level triggered

Flip Flops are edge triggered

Device Characteristic Equation

S-R Q∗^ = S + R′ ∙ Q

D Q∗^ = D

D w/ EN Q∗^ = EN ∙ D + EN′ ∙ Q

J-K Q∗^ = J ∙ Q′^ + K′ ∙ Q

T Q∗^ = Q′

T w/ EN Q∗^ = EN ∙ Q′^ + EN′ ∙ Q

Excitation Tables

Q Q* S R D J K T

0 0 0 X 0 0 X 0

0 1 1 0 1 1 X 1

1 0 0 1 0 X 1 1

1 1 X 0 1 X 0 0

Mealy Machine – A sequential circuit

whose output depends on both state

and input

Moore Machine – A sequential circuit

whose output depends on the state

alone

[0]

Current

state

Current

state

I/O