Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solving Non-Homogeneous Linear DEs with Constant Coefficients, Lecture notes of Differential Equations

A comprehensive guide to solving non-homogeneous linear differential equations with constant coefficients. It covers three key methods: method of reduction of order, method of undetermined coefficients, and method of variation of parameters. Each method is explained in detail with illustrative examples, making it an excellent resource for students studying differential equations.

Typology: Lecture notes

2021/2022

Uploaded on 02/27/2025

edgar-d-c
edgar-d-c ๐Ÿ‡ต๐Ÿ‡ญ

4 documents

1 / 56

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
SOLUTIONS OF NON-
HOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS
WITH CONSTANT
COEFFICIENTS
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38

Partial preview of the text

Download Solving Non-Homogeneous Linear DEs with Constant Coefficients and more Lecture notes Differential Equations in PDF only on Docsity!

SOLUTIONS OF NON-

HOMOGENEOUS LINEAR

DIFFERENTIAL EQUATIONS

WITH CONSTANT

COEFFICIENTS

INTENDED LEARNING OUTCOME:

โ€ข Solve for the solutions of non-homogeneous linear D.E. with

constant coefficients using:

โœ“ Method of Reduction of Order

โœ“ Method of Undetermined Coefficients

โœ“ Method of Variation of Parameters

  • Method of Reduction of Order
  • Method of Undetermined Coefficients
  • Method of Variation of Parameters SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

This method may be advantageously applied in finding ๐‘Œ

๐‘ƒ

under the following conditions:

  • The roots of the auxiliary equation โˆ… ๐‘š = 0 are all real.
  • The order of โˆ… ๐ท ๐‘ฆ = ๐‘“ ๐‘ฅ is not too large.
  • The functional operator โˆ… ๐ท is expressible in the

factored form

0

1

2

๐‘›

The solution is finally given by ๐ฒ = ๐˜๐ฉ = ๐…(๐ฑ)

Example : Find the general solution of ๐ท 2 โˆ’ 4 ๐‘ฆ = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ โˆ… ๐‘š = ๐‘š 2 โˆ’ 4 = 0 โˆ… ๐‘š = ๐‘š โˆ’ 2 ๐‘š + 2 = 0 Complementary Function: ๐’€๐’„ = ๐’„๐Ÿ๐’† ๐Ÿ๐’™

  • ๐’„๐Ÿ๐’† โˆ’๐Ÿ๐’™ Particular Solution, ๐‘Œ๐‘: ๐ท โˆ’ 2 ๐ท + 2 ๐‘ฆ = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ Let: ๐ท + 2 ๐‘ฆ = ๐‘ง ๐ท โˆ’ 2 ๐‘ง = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ ๐‘‘๐‘ง ๐‘‘๐‘ฅ

๐‘ฅ

Example : Find the general solution of ๐ท 2 โˆ’ 4 ๐‘ฆ = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ ๐‘ง๐‘’ โˆ’2๐‘ฅ = เถฑ ๐‘’ โˆ’2๐‘ฅ 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ง๐‘’ โˆ’2๐‘ฅ = 4 เถฑ^ ๐‘ฅ๐‘’ โˆ’2๐‘ฅ ๐‘‘๐‘ฅ โˆ’ 3 เถฑ^ ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ ๐‘ง๐‘’ โˆ’2๐‘ฅ = 4 โˆ’

โˆ’2๐‘ฅ โˆ’ โˆ’

โˆ’2๐‘ฅ โˆ’ 3 โˆ’๐‘’ โˆ’๐‘ฅ ๐‘ง๐‘’ โˆ’2๐‘ฅ = โˆ’2๐‘ฅ๐‘’ โˆ’2๐‘ฅ โˆ’ ๐‘’ โˆ’2๐‘ฅ

  • 3 ๐‘’ โˆ’๐‘ฅ ๐‘ง = โˆ’2๐‘ฅ โˆ’ 1 + 3 ๐‘’ ๐‘ฅ

2 ๐‘ฅ

Example : Find the general solution of ๐ท 2 โˆ’ 4 ๐‘ฆ = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ ๐‘ง = โˆ’ 2 ๐‘ฅ โˆ’ 1 + 3 ๐‘’ ๐‘ฅ ๐‘ซ + ๐Ÿ ๐’š = ๐’› ๐ท + 2 ๐‘ฆ = โˆ’2๐‘ฅ โˆ’ 1 + 3 ๐‘’ ๐‘ฅ ๐‘ƒ = 2 ๐‘„ = โˆ’ 2 ๐‘ฅ โˆ’ 1 + 3 ๐‘’ ๐‘ฅ โˆ… = ๐‘’ ืฌ ๐‘ƒ๐‘‘๐‘ฅ^ = ๐‘’ 2๐‘ฅ ๐‘ฆ โˆ… = เถฑ โˆ… ๐‘„ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ 2๐‘ฅ = เถฑ ๐‘’ 2๐‘ฅ โˆ’2๐‘ฅ โˆ’ 1 + 3 ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ

Example : Find the general solution of ๐ท 2 โˆ’ 4 ๐‘ฆ = 4 ๐‘ฅ โˆ’ 3 ๐‘’ ๐‘ฅ ๐’€๐’„ = ๐’„๐Ÿ๐’† ๐Ÿ๐’™

  • ๐’„๐Ÿ๐’† โˆ’๐Ÿ๐’™ ๐’š = ๐’† ๐’™ โˆ’ ๐’™ = ๐’€๐’‘ The complete solution: ๐’š = ๐’€๐’‘ + ๐’€๐’„ ๐’š = ๐’† ๐’™ โˆ’ ๐’™ + ๐’„๐Ÿ๐’† ๐Ÿ๐’™
  • ๐’„๐Ÿ๐’† โˆ’๐Ÿ๐’™

Example : Find the general solution of ๐ท 3 โˆ’ 2 ๐ท 2 +๐ท ๐‘ฆ = ๐‘ฅ โˆ… ๐‘š = ๐‘š 3 โˆ’ 2 ๐‘š 2 +๐‘š = 0 โˆ… ๐‘š = ๐‘š ๐‘š 2 โˆ’ 2๐‘š + 1 = 0 โˆ… ๐‘š = ๐‘š ๐‘š โˆ’ 1 ๐‘š โˆ’ 1 = 0 Complementary Function: ๐’€๐’„ = ๐’† ๐’™ (๐’„๐Ÿ+๐’„๐Ÿ๐’™) + ๐’„๐Ÿ‘ Particular Solution, ๐‘Œ๐‘: ๐ท ๐ท โˆ’ 1 ๐ท โˆ’ 1 ๐‘ฆ = ๐‘ฅ Let: ๐ท โˆ’ 1 ๐ท โˆ’ 1 ๐‘ฆ = ๐‘ง ๐ท๐‘ง = ๐‘ฅ ๐‘ง =

2

Example : Find the general solution of ๐ท 3 โˆ’ 2 ๐ท 2 +๐ท ๐‘ฆ = ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ

2 ๐‘ƒ = โˆ’ 1 ๐‘„ =

2 โˆ… = ๐‘’ ืฌ ๐‘ƒ๐‘‘๐‘ฅ^ = ๐‘’ โˆ’๐‘ฅ ๐‘ฃ โˆ… = เถฑ โˆ… ๐‘„ ๐‘‘๐‘ฅ ๐‘ฃ๐‘’ โˆ’๐‘ฅ = เถฑ ๐‘’ โˆ’๐‘ฅ

2 ๐‘‘๐‘ฅ

Example : Find the general solution of ๐ท 3 โˆ’ 2 ๐ท 2 +๐ท ๐‘ฆ = ๐‘ฅ ๐‘ฃ๐‘’ โˆ’๐‘ฅ = เถฑ ๐‘’ โˆ’๐‘ฅ

2 ๐‘‘๐‘ฅ ๐‘ฃ๐‘’ โˆ’๐‘ฅ = 1 2

2 ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฃ๐‘’ โˆ’๐‘ฅ =

2 ๐‘’ โˆ’๐‘ฅ โˆ’ เถฑ โˆ’๐‘’ โˆ’๐‘ฅ 2๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฃ๐‘’ โˆ’๐‘ฅ =

2 ๐‘’ โˆ’๐‘ฅ

  • 2 โˆ’๐‘ฅ๐‘’ โˆ’๐‘ฅ โˆ’ เถฑ โˆ’๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ) ๐‘ฃ๐‘’ โˆ’๐‘ฅ = โˆ’ 1 2

2 ๐‘’ โˆ’๐‘ฅ โˆ’๐‘ฅ๐‘’ โˆ’๐‘ฅ

  • (โˆ’๐‘’ โˆ’๐‘ฅ

Example : Find the general solution of ๐ท 3 โˆ’ 2 ๐ท 2 +๐ท ๐‘ฆ = ๐‘ฅ ๐ท โˆ’ 1 ๐‘ฆ = โˆ’

2 โˆ’ ๐‘ฅ โˆ’ 1 ๐‘ƒ = โˆ’ 1 ๐‘„ = โˆ’

2 โˆ’ ๐‘ฅ โˆ’ 1 โˆ… = ๐‘’ ืฌ ๐‘ƒ๐‘‘๐‘ฅ^ = ๐‘’ โˆ’๐‘ฅ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐’š โˆ… = (^) ืฌ โˆ… ๐‘ธ ๐’…๐’™; ๐‘ฆ๐‘’ โˆ’๐‘ฅ = (^) ืฌ ๐‘’ โˆ’๐‘ฅ โˆ’ 1 2

2 โˆ’ ๐‘ฅ โˆ’ 1 ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ = โˆ’

2 ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ โˆ’ เถฑ ๐‘ฅ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ โˆ’ เถฑ ๐‘’ โˆ’๐‘ฅ dx ๐‘ฆ๐‘’ โˆ’๐‘ฅ = โˆ’ โˆ’

2 ๐‘’ โˆ’๐‘ฅ โˆ’ ๐‘ฅ๐‘’ โˆ’๐‘ฅ

  • (โˆ’๐‘’ โˆ’๐‘ฅ

โˆ’๐‘ฅ

  • (โˆ’๐‘’ โˆ’๐‘ฅ

โˆ’๐‘ฅ

Example : Find the general solution of ๐ท 3 โˆ’ 2 ๐ท 2 +๐ท ๐‘ฆ = ๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ = เถฑ ๐‘’ โˆ’๐‘ฅ โˆ’

2 โˆ’ ๐‘ฅ โˆ’ 1 ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ = โˆ’

2 ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ โˆ’ เถฑ^ ๐‘ฅ๐‘’ โˆ’๐‘ฅ ๐‘‘๐‘ฅ โˆ’ เถฑ^ ๐‘’ โˆ’๐‘ฅ dx ๐‘ฆ๐‘’ โˆ’๐‘ฅ = โˆ’ โˆ’

2 ๐‘’ โˆ’๐‘ฅ โˆ’ ๐‘ฅ๐‘’ โˆ’๐‘ฅ

  • (โˆ’๐‘’ โˆ’๐‘ฅ

โˆ’๐‘ฅ

  • (โˆ’๐‘’ โˆ’๐‘ฅ

โˆ’๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ =

2 ๐‘’ โˆ’๐‘ฅ

  • 2 ๐‘ฅ๐‘’ โˆ’๐‘ฅ
  • 3 ๐‘’ โˆ’๐‘ฅ ๐’š =

๐Ÿ

  • ๐Ÿ๐’™ + ๐Ÿ‘ = ๐’€๐’‘

[ ] ๐‘’

๐‘ฅ