Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mock exam for Higher Order Ordinary Linear Differential Equation (MUC and MVP), Exams of Engineering Mathematics

Mathematical Methods of Engineering, A.Y: 2024-2025 This document includes sample problems with complete solution and answers abot the following topics: 1. Higher Order Ordinary Linear Differential Equation with Constant Coefficient (HOOLDEWCC) 2. Solution to Homogenous HOOLDEWCC 3. Solutions to non-homogeous HOOLDEWCC via Method of Undetermined Coefficients 4. Solutions to non-homogeous HOOLDEWCC via Method of Variation of Parameters (MVP) 5. Application of these topics (Mechanical Vibrations)

Typology: Exams

2023/2024

Available from 06/23/2025

char-maine-j
char-maine-j 🇵🇭

2 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5

Partial preview of the text

Download Mock exam for Higher Order Ordinary Linear Differential Equation (MUC and MVP) and more Exams Engineering Mathematics in PDF only on Docsity!

MUC without yp duplication y+ 2y’ + Sy = e* sinx Solution: Solving for yc Aux Eqn: m+2m+5=0 m?+2m+1=-4 (m+ 1)? =-4 m=-1+2i Ve = e-*(C, cos 2x + Cz sin 2x) Ve = Cye™* cos 2x + Czpe™* sin 2x Solving for yp f(x) = e* sinx Transformation for yp Vp = (Ae*)(B cos x + Csin x) Vp = ABe* cosx + ACe* sinx Yp = Me*cosx + Ne*sinx M=AB & N=AC Vp = Me* cosx — Me* sinx + Ne* sinx + Ne* cosx Yn = (M + N)e* cosx + (N — M)e*sinx Yp = (M + N)e* cosx — (M + N)e*sinx + (N — M)e* sinx + (N — M)e* cosx Yp = 2Ne* cosx — 2Me* sinx Vp t+ 2Ypy + S¥py = e* sinx (2Ne* cosx — 2Me* sinx) + 2[(M + N)e* cosx + (N — M)e* sin x] + 5(Me* cos x + Ne* sinx) = e* sinx (2N + 2M + 2N + 5M)e* cosx + (—2M + 2N — 2M + SN)e* sinx = e* sinx (AN + 7M)e* cosx + (7N — 4M)e* sinx = e* sinx 7 e* cosx: 4N+7M=0 > N=- 7M 7 e* sinx: 7N-4M=1 + 7(-1M)-4M=1 5 y — 4 4 M=—os 7 N=e 4 oxcosy seers =—-—e cosx+—e* sinx ye 65 65 Solving for y 7 V=Vet+Vp = Cye* cos 2x + C,e* sin 2x raid cosx+ ose sinx Find v's: 1 cosx sinx 0 —sinx cosx 0 -cosx —sinx. |A| = (sin? x) + cos? x =1 Solve 0 cos x sinx 0 —sinx cosx tanx+3 . ———_ -cosx —sinx 2: tanx +3 tanx +3 tanx +3 |Ay| = E>) (cos # x) — E>) (- sin? x) = >) (cos? x + sin? x) _tanx+3 2 tanx +3 yd _ tanx+3 Al 1 _ tanx+3 | tanx | Sax — Insecx | 3 my = | —z— dx= tox 1 0 sinx 0 0 cos x tanx +3 . 2 sin x sl (mats) ) —cosxtanx—3cosx —sinx—3cosx = —cosx) = = 2 2 eos 2 2 —sinx — 3cosx . ,_ a2] 72 __ ~sinx—3cosx 72 = Tal 1 = 2 _ ee -(> [=e — 08% | —3.sin# Kan 2 2 2g 2 1 cosx 0 0 —-sinx 0 tanx +3 0 -cosx ——>— 2 —sin? x tanx +3 . —sinxtanx—3sinx —Gogqx_ 7 3sinx _ asin? x 3sinx —(1—cos? x) 3sinx ~ 2cosx 20 2cosx 2 _ ot cos?x 3sinx ~ 2cosx | 2cosx 2 —secx cosx 3sinx a ar a) =secx , cosx 3sinx ot = Bal 8 2 7 2 ——seex | cosx’ 3sinx 3 Al 1 2 2 2 _ —— sen) a -(—Sa + COSH +f 3sinx | 3 = 2 2 ae eee ew z z _ —In|tanx + secx| LA Rd 7 2 2 2 ]Solution for yp using MVP: Yp = V1 + v2 cosx + v3 sinx (asx 3 ) + (ee See = sx 2 2 2 2 (lene seca sinx | 3cosx 2 2 2 Insecx 3 1 2 a) sinxIn|tanx + secx +5xt75 (cos x + sin’ a a ae) Insecx 3 1 sinxIn|tanx + secx| wg t9%t2 2 ) cos x ) sinx Complete Solution: Insecx 3 1 sinx In| tanx + secx | 2 12**2 2 y=C,+C,cosx+C3sinx+ Engr. Rodrigo L. Cardiz connected a resistor (R = 3 @), inductor (L = ; H),and capacitor (€ = 0.08 F) in series to an applied voltage E = 10 V. Assuming no initial current and charge when the voltage is first applied, find the subsequent charge (g) in the circuit. E=10v F Tle) = glo) =o