




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Microelectronics: Circuit Analysis and Design, 4 th edition solution manual
Typology: Study Guides, Projects, Research
1 / 665
This page cannot be seen from the preview
Don't miss anything!
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
3 / 2 Eg^ / 2 kT ni BT e
(a) Silicon
(i) (^) ( )( ) ( )( )
15 3 / 2 6
19
8 3
5.23 10 250 exp 2 86 10 250
2.067 10 exp 25.
1.61 10 cm
i
i
n
n
−
−
(ii) (^) ( )( )
( )(^ )
15 3 / 2 6
19
11 3
5.23 10 350 exp 2 86 10 350
3.425 10 exp 18.
3.97 10 cm
i
i
n
n
−
−
(b) GaAs
(i) (^) ( )( )
( )(^ )
( ) [ ]
14 3 / 2 6
17
3 3
2.10 10 250 exp 2 86 10 250
8.301 10 exp 32.
6.02 10 cm
i
i
n
n
−
−
(ii) (^) ( )( )
( )(^ )
( ) [ ]
14 3 / 2 6
18
8 3
2.10 10 350 exp 2 86 10 350
1.375 10 exp 23.
1.09 10 cm
i
i
n
n
−
−
a.
3 / 2 exp 2
i
Eg n BT kT
12 15 3 / 2 6
10 5.23 10 exp 2(86 10 )( )
−
3 4 3 / 2 6.40^10 1.91 10 T exp T
By trial and error, T ≈368 K
b.
9 3 ni 10 cm
( )( )
9 15 3 / 2 6
10 5.23 10 exp 2 86 10
−
3 7 3 / 2 6.40^10 1.91 10 T exp T
By trial and error, T ≈ 268 °K
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(a) p-type; cm ;
16 po = 10
16
2 62
o
i o p
n n cm
− 3
(b) p-type; cm ;
16 = 10 o p
16
2 132
o
i o p
n n cm
− 3
(a) n -type
(b)
16 3
2 2 10 3 3 16
5 10 cm
4.5 10 cm 5 10
o d
i o o
n N
n p n
−
−
(c)
16 3 no Nd 5 10 cm
− = = ×
From Problem 1.1(a)(ii)
11 3 ni 3.97 10 cm
− = ×
2 11 6 3 16
3.15 10 cm 5 10
p o
−
(a) p-type; cm ;
16 po = 5 × 10
16
2 102
o
i o p
n n cm
− 3
(b) p-type; cm ;
16 po = 5 × 10
16
2 62
o
i o p
n n cm
− 3
(a) Add boron atoms
(b) cm
17 = = 2 × 10 a o N p
− 3
(c)
17
2 102
o
i o p
n n cm
− 3
(a)
15 3
2 2 10 4 3 15
o
i o o o
n cm
n p p n
−
cm
−
(b) > ⇒n-type o o n p
(c)
15 3 5 10 o d n N cm
− ≅ = ×
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
a. Add Donors 15 3 7 10 cm d
− = ×
6 3 2 10 cm / o i d n N
− b. Want p = =
2 6 15
2 3
exp
i n
Eg B T kT
21
2 21 15 3 6
7 10 5.23 10 exp 86 10
−
By trial and error, T ≈ 324 °K
5 = Ε= ⇒ =
−
(b)
4
3
= ×
−
−
ρ
ρ
V/cm
1
= Ε⇒ = cm
16 19
− n
n d d e
e N N μ
σ σ μ cm
− 3
(a)
15 19
− μ μρ
ρ
n
d n d e
e N
cm
− 3
J = ρ J ρ
V/cm
(a)
15 19
− n
n d d e
e N N μ
σ σ μ cm
− 3
(b)
16 19
− p
a e
cm
− 3
19 1.6 10 8500 n d d σ e μ N N
− ≅ = ×
15 19 3 4 1 10 10 1.36 1.36 10 d N cm σ cm
− − ≤ ≤ ⇒ ≤ ≤ × Ω −
3 2
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
15 15
=
⎥
bi
17 15
=
⎥
bi
18 18
=
⎥
Vbi = V
2
ln
i
a d bi T n
or
16
2 2
exp 10
exp ⎟= × ⎠
T
bi
d
i a V
n N cm
− 3
16
2 1
ln 0.026 ln (1.5 10 )
a d^ a bi T i
n
0 2
For
15 3 Na 10 cm , Vbi 0.
− = =
For
18 3 Na 10 cm , Vbi 0.
− = =
kT
kT ( T )
3/
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
( )( ) ( )( )
14 3 / 2 6
2.1 10 exp 2 86 10
n i T T
−
2 ln
a d bi T i
n
T ni Vbi
200 1.256 1.
250 6.02 × 10
3
(^300) 1.80 × 10
6
(^350) 1.09 × 10
8
(^400) 2.44 × 10 9
10
(^500) 2.00 × 10
11
1/ 2
R j jo bi
− ⎛ ⎞ = (^) ⎜ + ⎟
⎝ ⎠
( )
( )( )
( )
16 15
10 2
0.026 ln 0.684 V 1.5 10
bi
(a) (^) ( )
1/ 2 1 0.4 1 0.255 pF
j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(b) (^) ( )
1/ 2 3 0.4 1 0.172 pF
j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(c) (^) ( )
1/ 2 5 0.4 1 0.139 pF
C j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(a)
1 2
/
R j jo bi
− ⎛ ⎞ = (^) ⎜ + ⎟
⎝ ⎠
For VR = 5 V ,
1 2 5 (0 02) 1 0 00743 0 8
/
j C.. p .
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
For VR = 1.5 V ,
1 2 1 5 (0 02) 1 0 0118 0 8
/
j
C.. p .
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(c)
3 12
− −
fo fo
MHz
a. exp 1 0.90 exp 1
D D S T T
exp 1 0.90 0.
D
T
b.
exp 1 exp 1
exp 1 exp^1
F
F S T
R S (^) R
T
F
R
= exp 1
T
D D S V
10 exp
11 ⎟⇒ ⎠
− I (^) D A
10 exp
11 ⎟⇒ ⎠
− D I mA
10 exp
11 ⎟⇒ ⎠
− D
11 12 1 5. 37 10
10 exp
− − =− × ⎥ ⎦
D
11 11 1 10
10 exp
− − ≅− ⎥ ⎦
D
11 10
− =− D
10 exp
13 ⎟⇒ ⎠
− I (^) D A
10 exp
13 ⎟⇒ ⎠
− D
10 exp
13 ⎟⇒ ⎠
− D I (^) mA
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
13 14 1 5. 37 10
10 exp
− − ⎥=− × ⎦
(v) A
13 10
− ID ≅−
(vi) A
13 10
− ID ≅−
S
D D T I
V V ln
6
= ⎟
−
−
V (^) D V
6
= ⎟
−
−
V (^) D V
3
= ⎟
−
−
V (^) D V
(ii) 1 0. 018
5 10 10 exp
12 11 ⎥⇒ =− ⎦
− − D
D V
6
= ⎟
−
−
V (^) D V
6
= ⎟
−
−
V (^) D V
3
= ⎟
−
−
V (^) D V
(ii) 1 0. 00274
10 10 exp
14 13 ⎥⇒ =− ⎦
− − D
D V
(a)
10 exp
15 I (^) S 2.03 10 A
− = ×
(b)
12 4.45 10
− ×
14 9.50 10
− ×
10 2.08 10
− ×
13 6.50 10
− ×
0.4 (^) 9.75 × 10 −^9 4.45 × 10 −^12
5 2.14 10
− ×
10 2.08 10
− ×
3 10
− 9 1.42 10
− ×
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
3
14
3
12
ln (0 026) ln 0 6347 V 5 10
(0 026) ln 0 5150 V 5 10
D D t S
D
D
−
−
−
−
(a) I^ S IS A
3 8
− − ⎟⇒ = × ⎠
8 ⎟⇒ = ⎠
− I (^) D I D mA
8 ⎟⇒ = ⎠
− I (^) D I D mA
10 exp
22 ⎟⇒ ⎠
− I (^) D nA
10 exp
22 ⎟⇒ ⎠
− I (^) D A
10 exp
22 ⎟⇒ ⎠
− D I mA
22 23 1 5. 37 10
10 exp
− − =− × ⎥ ⎦
D
For V (^) D =− 0. 20 V, A
22 10
− ID =−
For =− 2 V, A D
22 10
− =− D
(b)
5 10 exp
24 ⎟⇒ ⎠
− I (^) D pA
5 10 exp
24 ⎟⇒ ⎠
− I (^) D A
5 10 exp
24 ⎟⇒ ⎠
− D I mA
24 24 1 2. 68 10
5 10 exp
− − =− × ⎥ ⎦
D
For =− 0. 20 V, A D
24 5 10
− =− × D
For VD =− 2 V, A
24 5 10
− ID =− ×
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
IS doubles for every 5C increase in temperature. 12 I (^) S 10 A
− = at T = 300K
For
12 I (^) S 0.5 10 A T 295 K
− = × ⇒ =
For
12 50 10 , (2) 50 5.
n S I A n
− = × = ⇒ =
Where n equals number of 5C increases.
So 295 ≤ T ≤328.2 K
S T
S
Δ = Δ = −
S
S
T T
T T
9
9 8
13
3
exp (100) 0. (2.147 10 ) ( 55) 0. exp
D
D
D
D
(a) PS D D
6
−
5 10 exp
11 D D
By trial and error,
(b)
11 5 10
− ≅−× D
D
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(a) ID 1 = ID 2 = 1 mA
3
1 2
−
−
D D
3
1
−
−
D
3
2
−
−
D
(b) VD (^) 1 = VD 2
(i) 0. 5 2
1 2
i D D
I I mA
3
1 2
−
−
D D
(ii) 0. 10 5 10
13
14
2
1
2
×
−
−
S
S
D
D
I
So I (^) D 1 = 0. 10 ID 2
ID 1 + ID 2 = 1. 1 ID 2 = 1 mA
So I (^) D 2 = 0. 909 mA, ID 1 = 0. 0909 mA
Now
3
1
−
−
D
3
2
−
−
D
6 10 exp
14 3 ⎟⇒ ⎠
− I (^) D mA
R I mA
D D
3
1 2
−
−
D D
I
(b) 2. 426 mA 3
D
R I (^) mA
ID 1 = ID 2 = 2. 426 + 1. 27 = 3. 696 mA
3
−
−
VD V D V
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(a) Assume diode is conducting.
Then, VD = V (^) γ=0.7 V
So that 2
R
I = ⇒. μ A
1
R
I μ A
Then 1 2
D R R
Or 26 7 D
(b) Let R 1 (^) = 50 k ΩDiode is cutoff.
D
Since , 0 D D
γ
At node VA :
A A D
At node V (^) B = VA − V γ
(^5) ( ) ( )
A r A r D
So
(^5) ( ) 5
A r (^) A A A
r
)
A
Multiply by 6:
10 − (^2) ( VA − Vr (^) ) + 15 − 6 V (^) A = (^3) ( VA − Vr
r r
(a) 0.6 V r
11 V (^) A = 25 + 5 0.6 ( ) = 28 ⇒ VA =2.545 V
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(c) (i)
O
(ii)
(d) (i) I = 0 , VO =− 5 V
(ii) I = 0 , VO =− 5 V
(a) 20
O
−
5 10 exp
By trial and error, V (^) D = VO = 0. 5775 V, I = 0. 221 mA
(b) 40
D
I = 0. 2355 mA, V (^) D = 0. 579 V, VO =− 0. 289
(c) 25
D
I = 0. 3763 mA, VD = 0. 5913 V, VO = 0. 1185
(d) A, V
14 5 10
− I =−× ≅− 5 O
(a) Diode forward biased VD = 0.7 V
5 = (0.4)(4.7) + 0.7 + V ⇒ V =2.42 V
(b) P = I V ⋅ (^) D = (0.4)(0.7) ⇒ P =0.28 mω
(a) 2 1 1
2
0 2 1 1 1
0.65 mA 1
2(0.65) 1.30 mA
R D D
D
I r D
(b) (^2)
2 2
1 2 2
1
0.65 mA 1
3.025 mA 2
2.375 mA
R
D D
D D R
D
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
a.
0 026 k 26 1
0 05 50 A peak-to-peak
(26)(50) A 1 30 mV peak-to-peak
T d DQ
d DQ
d d d d
i. I
v i v.
τ
μ
τ μ
b. For
0 1 mA 260 0 1
DQ d
= ⇒ τ = = Ω
0 05 5 A peak-to-peak d DQ i =. I = μ
(260)(5) V 1 30 mV peak-to-peak d d d d
(a) 1
DQ
T d I
r k Ω
(b) = ⇒ 100 Ω
r d
(c) = ⇒ 10 Ω
d r
a. diode resistance d T r = V / I
d T d S d S T S
T d s o T S
r V I v v r R V R I
v v v V IR
v S
b. RS = 260 Ω
( )( )
0 0
0 0
0 0
1 mA, 0 0909 0 026 (1)(0 26)
0 1 mA, 0 50 0 026 0 1 0 26
0 01 mA. 0 909 0 026 (0 01)(0 26)
T
S T S S
s S
S S
v V. v I. v V IR.. v
v. v I.. v... v
v. v I.. v... v