Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Symmetric Matrix Calculation in 3D Space, Essays (university) of Mathematical Methods for Numerical Analysis and Optimization

The process of calculating the symmetric matrix in 3d space using local and global coordinates. The transformation of local to global coordinates, the calculation of the global matrix, and the resulting values of the matrix elements. The document also includes the use of matlab for matrix calculations.

What you will learn

  • How is the use of Matlab for matrix calculations beneficial?
  • How is the transformation of local to global coordinates calculated?
  • What is the resulting symmetric matrix in 3D space?

Typology: Essays (university)

2018/2019

Uploaded on 04/15/2019

yasin5252
yasin5252 🇹🇷

4

(1)

3 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
YATAY DURAN BİR KAFES ÇUBUĞUNUN RİJİTLİK MATRİSİ
d1d2
E, A, L
f1f2
E, A, L
1. Durum: d1=1, d2=0
d =1
1
f1f2
d =0
2
2. Durum: d1=0, d2=1
d =1
2
f1f2
d =0
1
Matris formunda yazarsak
{ } { }
dkf ]
ˆ
[=
⎭
⎬
⎫
⎩
⎨
⎧
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
=
⎭
⎬
⎫
⎩
⎨
⎧
2
1
2
1
d
d
L
EA
L
EA
L
EA
L
EA
f
f
veya
⎭
⎬
⎫
⎩
⎨
⎧
⎥
⎦
⎤
⎢
⎣
⎡
=
⎭
⎬
⎫
⎩
⎨
⎧
2
1
2
1
11
11
d
d
L
EA
f
f
Görüldüğü gibi rijitlik matrisi simetrik bir kare matristir.
=0
x
F
L
EA
ff ==12
L
EA
f=
2
=0
x
F
L
EA
ff ==21
pf3
pf4
pf5

Partial preview of the text

Download Symmetric Matrix Calculation in 3D Space and more Essays (university) Mathematical Methods for Numerical Analysis and Optimization in PDF only on Docsity!

YATAY DURAN BİR KAFES ÇUBUĞUNUN RİJİTLİK MATRİSİ

d 1 E, A, L d 2 f 1 E, A, L f 2

1. Durum: d 1 =1, d 2 =

d =1 1 f 1 f 2 d =0 2

2. Durum: d 1 = 0 , d 2 = 1

d =1 2 f 1 f 2 d =0 1

Matris formunda yazarsak

{ f } k ]{ d }

=[

2 1 2 1 d d L

EA

L

EA

L

EA

L

EA

f f

veya

2 1 2 1 1 1

d d L

EA

f f

Görüldüğü gibi rijitlik matrisi simetrik bir kare matristir.

L EA f (^) 1 =

∑ Fx^ =^0 ⇒^

L EA f (^) 2 = − f 1 =−

L

EA

f 2 =

∑ Fx^ =^0 ⇒^

L EA f (^) 1 = − f 2 =−

EĞİK DURAN BİR KAFES ÇUBUĞUNUN RİJİTLİK MATRİSİ

Lokal Eksenlerdeki Durum

d 3 E, A, L d 4 d 1 d 2 Lokal koordinatlarda uç deplasmanlar E, A, L f 1 f 2 Lokal koordinatlarda uç kuvvetler f 3 f 4 x y Lokal koordinatlar { f } k ]{ d } ˆ =[ ⎪

4 3 2 1 4 3 2 1 0 0 0 0

d d d d L

EA

f f f f

Global Eksenlerdeki Durum

E, A, L Global koordinatlarda uç deplasmanlar D 3 D 4 D 1 D 2 E, A, L Global koordinatlarda uç kuvvetler F 3 F 4 F 1 F 2 X Y Global eksenler { F } =[ k ]{ D }

Buradaki [k] yı lokal eksenlerden global eksenlere dönüştürme işlemi ile elde

edelim.

Matlab ile işlemleri yaparsak:

**>> syms c s

T=[c s 0 0; - s c 0 0; 0 0 c s; 0 0 - s c] k_local=[1 0 - 1 0; 0 0 0 0; - 1 0 1 0; 0 0 0 0] k_global=T.'k_localT** k_global = [ c^2, cs, - c^2, - cs] [ cs, s^2, - cs, - s^2] [ - c^2, - cs, c^2, cs]

[ - cs, - s^2, cs, s^2] >> pretty(ans) [ 2 2 ] [ c c s - c - c s] [ ] [ 2 2 ] [c s s - c s - s ] [ ] [ 2 2 ] [-c - c s c c s ] [ ] [ 2 2 ] [-c s - s c s s ] ⎥

2 2 2 2 2 2 2 2 [ ] c s s c s s c c s c c s c s s c s s c c s c c s L

EA

k 5A 4t 4A 3A 3t 3m 4m B D C 2 0BX 0BY 1 2 3 0DY 2 1 2 3 4 5 6

2 0BX 0BY 1 2 3 0DY 2 1 0DY 3 0BY ϕ (^) =90 o cos ϕ= 0. ϕ (^) =0 o sin ϕ= 0. 0BX ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − = 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 [ k ] 1 EA 0BX 0BY 1 2 0BX 0BY 1 2 1 2 3 0DY 1 2 3 0DY ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 [ k ] 2 EA 0BX (^) 0BY (^3) 0DY 0BX 0BY 3 0DY ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − − − − =

  1. 48 0. 36 0. 48 0. 36
  2. 64 0. 48 0. 64 0. 48
  3. 48 0. 36 0. 48 0. 36
  4. 64 0. 48 0. 64 0. 48 [ k ] 3 EA 1 2 3 1 2 ⎥^3 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − = 1 0 1. 64 0 1 0 1 0 1 [ K ] EA 1 2 3

⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = − 0 4 3 F { D } K { F } 1 [ ] − = 1 2 3

⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = −

  1. 6875 4
  2. 6875 1 EA D

Eleman Uç Kuvvetleri

0BX 0BY 1 2 F 1 F 2 F 3 F 4 { F (^) } (^) =[ k ]{ D }