



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The process of calculating the symmetric matrix in 3d space using local and global coordinates. The transformation of local to global coordinates, the calculation of the global matrix, and the resulting values of the matrix elements. The document also includes the use of matlab for matrix calculations.
What you will learn
Typology: Essays (university)
1 / 6
This page cannot be seen from the preview
Don't miss anything!
d 1 E, A, L d 2 f 1 E, A, L f 2
d =1 1 f 1 f 2 d =0 2
d =1 2 f 1 f 2 d =0 1
2 1 2 1 d d L
f f
2 1 2 1 1 1
d d L
f f
L EA f (^) 1 =
L EA f (^) 2 = − f 1 =−
L EA f (^) 1 = − f 2 =−
d 3 E, A, L d 4 d 1 d 2 Lokal koordinatlarda uç deplasmanlar E, A, L f 1 f 2 Lokal koordinatlarda uç kuvvetler f 3 f 4 x y Lokal koordinatlar { f } k ]{ d } ˆ =[ ⎪
4 3 2 1 4 3 2 1 0 0 0 0
d d d d L
f f f f
E, A, L Global koordinatlarda uç deplasmanlar D 3 D 4 D 1 D 2 E, A, L Global koordinatlarda uç kuvvetler F 3 F 4 F 1 F 2 X Y Global eksenler { F } =[ k ]{ D }
**>> syms c s
T=[c s 0 0; - s c 0 0; 0 0 c s; 0 0 - s c] k_local=[1 0 - 1 0; 0 0 0 0; - 1 0 1 0; 0 0 0 0] k_global=T.'k_localT** k_global = [ c^2, cs, - c^2, - cs] [ cs, s^2, - cs, - s^2] [ - c^2, - cs, c^2, cs]
[ - cs, - s^2, cs, s^2] >> pretty(ans) [ 2 2 ] [ c c s - c - c s] [ ] [ 2 2 ] [c s s - c s - s ] [ ] [ 2 2 ] [-c - c s c c s ] [ ] [ 2 2 ] [-c s - s c s s ] ⎥
2 2 2 2 2 2 2 2 [ ] c s s c s s c c s c c s c s s c s s c c s c c s L
k 5A 4t 4A 3A 3t 3m 4m B D C 2 0BX 0BY 1 2 3 0DY 2 1 2 3 4 5 6
2 0BX 0BY 1 2 3 0DY 2 1 0DY 3 0BY ϕ (^) =90 o cos ϕ= 0. ϕ (^) =0 o sin ϕ= 0. 0BX ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − = 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 [ k ] 1 EA 0BX 0BY 1 2 0BX 0BY 1 2 1 2 3 0DY 1 2 3 0DY ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 [ k ] 2 EA 0BX (^) 0BY (^3) 0DY 0BX 0BY 3 0DY ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − − − − =
⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = − 0 4 3 F { D } K { F } 1 [ ] − = 1 2 3
⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ = −
0BX 0BY 1 2 F 1 F 2 F 3 F 4 { F (^) } (^) =[ k ]{ D }