Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 53 1st Semester, Exams of Mathematics

Let f be the function whose graph isshown in the figure below.

Typology: Exams

2020/2021

Uploaded on 11/02/2022

xavier-domingo
xavier-domingo ๐Ÿ‡ต๐Ÿ‡ญ

1 document

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 53 1st Semester 2021-2022
Homework 2
Student Name/Number: Xavier D. Domingo
_____________________________________________________________________________________
Do as indicated and work independently. Upload your neat and complete solutions to our
Google Classroom on or before September 29, 2021 (11:59 pm). Submit your output in a
pdf format or in a zip file containing your photographed or scanned solutions. Name your file as
M53BF3_HW2_LastNameFirstName.pdf or M53BF3_HW2_LastNameFirstName.zip. Example:
M53BF3_HW2_PinoRodney.pdf
_____________________________________________________________________________________
Let
f
be the function whose graph is shown in the figure below.
(1.1)
Evaluate
f
(
โˆ’
1)
,
f
(0)
,
f
(2)
,
and
f
(3).
1.
f (-1) = Undefined
2.
f (0) = 1
3.
f (2) = Undefined
4.
f (3) = 0
(1.2)
Evaluate also
lim
๐‘ฅโ†’โˆ’1
๐‘“(๐‘ฅ),lim
๐‘ฅโ†’0
๐‘“(๐‘ฅ),lim
๐‘ฅโ†’2
๐‘“(๐‘ฅ),lim
๐‘ฅโ†’3
๐‘“(๐‘ฅ), lim
๐‘ฅโ†’โˆ’1
โˆ’
๐‘“(๐‘ฅ), lim
๐‘ฅโ†’โˆ’1
๐‘“(๐‘ฅ), lim
๐‘ฅโ†’0
โˆ’
๐‘“(๐‘ฅ), lim
๐‘ฅโ†’โˆ’1
๐‘“(๐‘ฅ), lim
๐‘ฅโ†’โˆ’2
โˆ’
๐‘“(๐‘ฅ),
๐‘Ž๐‘›๐‘‘ lim
๐‘ฅโ†’3
+
๐‘“(๐‘ฅ)
pf3
pf4
pf5

Partial preview of the text

Download Math 53 1st Semester and more Exams Mathematics in PDF only on Docsity!

Math 53 1st Semester 2021 - 2022

Homework 2

Student Name/Number: Xavier D. Domingo


Do as indicated and work independently. Upload your neat and complete solutions to our

Google Classroom on or before September 29, 2021 (11:59 pm). Submit your output in a

pdf format or in a zip file containing your photographed or scanned solutions. Name your file as

M53BF3_HW2_LastNameFirstName.pdf or M53BF3_HW2_LastNameFirstName.zip. Example:

M53BF3_HW2_PinoRodney.pdf


Let f be the function whose graph is shown in the figure below.

(1. 1 ) Evaluate f ( โˆ’ 1) , f (0) , f (2) , and f (3).

  1. f (-1) = Undefined
  2. f (0) = 1
  3. f (2) = Undefined
  4. f (3) = 0

(1.2) Evaluate also

lim

๐‘ฅโ†’โˆ’ 1

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’ 0

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’ 2

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’ 3

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’โˆ’ 1

โˆ’

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’โˆ’ 1

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’ 0

โˆ’

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’โˆ’ 1

๐‘“

( ๐‘ฅ

) , lim

๐‘ฅโ†’โˆ’ 2

โˆ’

๐‘“

( ๐‘ฅ

) ,

๐‘Ž๐‘›๐‘‘ lim

๐‘ฅโ†’ 3

๐‘“(๐‘ฅ)

(a) lim

๐‘ฅโ†’โˆ’ 1

(b) lim

๐‘ฅโ†’ 0

= DNE

(c) lim

๐‘ฅโ†’ 2

(d) lim

๐‘ฅโ†’ 3

= DNE

(e) lim

๐‘ฅโ†’โˆ’ 1

โˆ’

(f) lim

๐‘ฅโ†’ 0

โˆ’

(g) lim

๐‘ฅโ†’ 2

โˆ’

(h) lim

๐‘ฅโ†’ 3

( 2 .) Prove using the definition of limits: lim

๐‘ฅโ†’ 3

*We want to find ฮด so that when |x-3|<8, |3x- 1 - 8|< ฮต

|3x- 1 - 8|< ฮต

|3x-9|< ฮต

|3(x-3)| < ฮต

3|x-3|< ฮต

|x- 3 |<

๐œ€

3

Delta: |x-3|<

ฮด =

๐œ€

3

Proof:

Suppose ฮต>0 is given

Choose ฮด =

๐œ€

3

Assume |x-3|<

๐œ€

3

Now, |3x- 1 - 8|

=|3x- 9 |

(c) lim

๐‘ฅโ†’ 18

โˆš๐‘ฅโˆ’ 2 โˆ’ 4

๐‘กโˆ’ 18

(โˆš๐‘ฅโˆ’ 2 โˆ’ 4 )(โˆš๐‘ฅโˆ’ 2 + 4 )

( ๐‘กโˆ’ 18

) ( โˆš

๐‘ฅโˆ’ 2 + 4 )

๐‘กโˆ’ 2 + 4 โˆš

๐‘กโˆ’ 2 โˆ’ 4 โˆš

๐‘กโˆ’ 2 โˆ’ 16

๐‘กโˆ’ 18 ( โˆš

๐‘กโˆ’ 2 + 4 )

๐‘กโˆ’ 2 โˆ’ 16

๐‘กโˆ’ 18 ( โˆš

๐‘กโˆ’ 2 + 4 )

๐‘กโˆ’ 18

๐‘กโˆ’ 18 (โˆš๐‘กโˆ’ 2 + 4 )

1

โˆš

๐‘กโˆ’ 2 + 4

1

โˆš 18 โˆ’ 2 + 4

1

โˆš

16 + 4

1

4 + 4

1

8

(d) lim

๐‘ฅโ†’

1

3

โˆ’

[3x + 1 ] = [ 3 ( 0. 3 ) + 1 ]

= [ 0. 9 + 1 ]

= [ 1. 9 ]

(e) lim

๐‘ฅโ†’

1

3

๐‘ฅ+ 1

1 โˆ’ 3 ๐‘ฅ

( 1 / 3 )+ 1

1 โˆ’ 3

( 1 / 3

)

( 1 / 3 + 1 )

1 - 3 ( 1 / 3 )

4 / 3

( 1 โˆ’ 1

)( 3

)

4

0 ( 3 )

4 / 3

0

โˆ’

PS: Sir, nag direct substitution po ako sa item na ito gamit ang fraction kasi

po nalilito po ako kapag decimal number po ginamit ko sir. Nilagyan ko din

po ng graph to prove po kasi di po ako masyadong sure sa answer ko.

(d) lim

๐‘ฅโ†’+โˆž

๐‘ฅ+ 1

1 โˆ’ 3 ๐‘ฅ

( ๐‘ฅ+ 1

) (

1

๐‘ฅ

)

( 1 โˆ’ 3 ๐‘ฅ

) (

1

๐‘ฅ

)

1 +

1

๐‘ฅ

1

๐‘ฅ

โˆ’ 3

1 + 0

0 โˆ’ 3