Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Linear Differential Equations of Higher Order: Concepts and Applications, Lecture notes of Differential Equations

A comprehensive introduction to linear differential equations of higher order, covering key concepts such as homogeneity, linearity, and the differential operator. It explores the properties of these equations, including linear independence of functions and the wronskian. The document also delves into solving homogeneous linear equations using the exponential shift method and provides examples to illustrate the concepts. It concludes with an assessment section containing exercises for practice.

Typology: Lecture notes

2021/2022

Uploaded on 02/27/2025

edgar-d-c
edgar-d-c ๐Ÿ‡ต๐Ÿ‡ญ

4 documents

1 / 35

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
LINEAR DIFFERENTIAL
EQUATIONS OF HIGHER
ORDER
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23

Partial preview of the text

Download Linear Differential Equations of Higher Order: Concepts and Applications and more Lecture notes Differential Equations in PDF only on Docsity!

LINEAR DIFFERENTIAL

EQUATIONS OF HIGHER

ORDER

INTENDED LEARNING OUTCOMES:

  • Identify Homogeneous and Non-homogeneous Linear D.E.โ€™s;
  • Understand the properties of the Linear D.E.โ€™s of Higher Order and the Linear Combination of Functions;
  • Identify the linear independence of functions;
  • Understand the concept of Differential Operator; and
  • Evaluate Linear D.E.โ€™s of Higher Order in Operator Form.

SAMPLE PROBLEMS Determine the respective order, degree, unknown variable, independent variable, homogeneity, and linearity of the following D.E.โ€™s:

  1. ๐ฒ๐ฒ โ€ฒโ€ฒ + ๐ฒ โ€ฒ + ๐ฒ = ๐Ÿ
  2. ๐

๐ฒ ๐๐ฑ

๐

๐ฒ ๐๐ฑ

= ๐ฌ๐ข๐ง ๐ฒ

๐

๐ฒ ๐๐ฑ

๐๐ฒ ๐๐ฑ

  • ๐ฒ ๐Ÿ = ๐ŸŽ
  1. ๐ž ๐ฑ ๐

๐ฒ ๐๐ฑ

  • ๐ฑ ๐๐ฒ ๐๐ฑ
  • ๐ฒ = ๐Ÿ
  1. ๐ฑ ๐Ÿ‘ ๐

๐ฒ ๐๐ฑ

  • ๐ฑ ๐Ÿ ๐๐ฒ ๐๐ฑ
  • ๐ฑ ๐Ÿ ๐ฒ = ๐ฌ๐ข๐ง ๐ฑ

nd

order, 1

st

degree, y, x, Non-Linear

th

order, 1

st

degree, y, x, Non-Linear

rd

order, 1

st

degree, y, x, Non-Linear

nd

order, 1

st

degree, y, x, Linear, variable

coefficient, non-homogeneous

nd

order, 1

st

degree, y, x, Linear, variable

coefficient, non-homogeneous

SAMPLE PROBLEMS Re-write the given D.E.โ€™s and determine their respective order, degree, unknown variable, independent variable, linearity, homogeneity,

  1. ๐ฒ โ€ฒโ€ฒโ€ฒ + ๐ฒ โ€ฒโ€ฒ + ๐ฒ โ€ฒ + ๐ฒ = ๐Ÿ
  2. ๐

๐ฎ ๐๐ญ

  • ๐ญ ๐๐ฎ ๐๐ญ
  • ๐Ÿ‘๐ฎ = ๐Ÿ
  1. ๐ฒ โ€ฒ = โˆ’ ๐ฑ ๐ฒ ; ๐ฒ๐ฒ โ€ฒ = โˆ’๐ฑ
  2. ๐

๐ฒ ๐๐ฑ

๐๐ฒ ๐๐ฑ = ๐ฑ ๐Ÿ ๐ฒ

๐

๐ฒ ๐๐ฑ

๐๐ฒ ๐๐ฑ

  • ๐ฒ = ๐ŸŽ

rd

order, 1

st

degree, y, x, Linear, constant

coefficient, non-homogeneous

nd

order, 1

st

degree, u, t, Linear, variable

coefficient, non-homogeneous

st

order, 1

st

degree, y, x, Non-Linear

nd

order, 1

st

degree, y, x, Linear , variable

coefficient, non-homogeneous

rd

order, 1

st

degree, y, x, Linear, constant

coefficient, homogenous

FIRSTโ€“ORDERED LINEAR DIFFERENTIAL EQUATIONS

Solution:

ืฌ ๐‘ท๐’…๐’™^

FIRSTโ€“ORDERED LINEAR DIFFERENTIAL EQUATIONS

Solution:

ืฌ ๐‘ท๐’…๐’™^

FIRSTโ€“ORDERED LINEAR DIFFERENTIAL EQUATIONS

Solution:

HIGHERโ€“ORDERED LINEAR DIFFERENTIAL EQUATIONS

If y = Yp is any particular solution of a general linear differential equation and y = Yc

is the general solution of its corresponding homogeneous equation, then y = Yp + Yc

๐‘› ๐‘ฆ ๐‘‘๐‘ฅ๐‘›^

๐‘›โˆ’ 1 ๐‘ฆ ๐‘‘๐‘ฅ๐‘›โˆ’^1

๐‘› (Yp + Yc) ๐‘‘๐‘ฅ ๐‘›

๐‘›โˆ’ 1 (Yp + Yc) ๐‘‘๐‘ฅ ๐‘›โˆ’ 1

๐‘‘(Yp + Yc) ๐‘‘๐‘ฅ

  • ๐‘Ž๐‘› (Yp + Yc) = ๐‘“(๐‘ฅ) ๐‘Ž 0

๐‘› (Yp) ๐‘‘๐‘ฅ ๐‘›

๐‘› (Yc) ๐‘‘๐‘ฅ ๐‘›

  • โ€ฆ + ๐‘Ž๐‘› Yp + ๐‘Ž๐‘› Yc = ๐‘“(๐‘ฅ) ๐‘Ž 0

๐‘› (Yp) ๐‘‘๐‘ฅ๐‘›^

  • โ‹ฏ + ๐‘Ž๐‘› Yp + ๐‘Ž 0

๐‘› (Yc) ๐‘‘๐‘ฅ๐‘›^

  • โ€ฆ + ๐‘Ž๐‘› Yc = ๐‘“(๐‘ฅ) ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ)

LINEAR COMBINATION OF FUNCTIONS

โ€œAny linear combination of solutions of a linear differential equation is also a

solution.โ€

  • If ๐‘ฆ 1 and ๐‘ฆ 2 are solutions to the homogeneous linear equation with constant coefficients, then

is a solution, where ๐‘ 1 and ๐‘ 2 are constants.

๐‘› ๐‘ฆ ๐‘‘๐‘ฅ๐‘›^

๐‘›โˆ’ 1 ๐‘ฆ ๐‘‘๐‘ฅ๐‘›โˆ’^1

Since ๐‘ฆ 1 and ๐‘ฆ 2 are solutions, then ๐‘Ž 0 ๐‘‘๐‘›๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›^

๐‘‘๐‘›โˆ’^1 ๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›โˆ’^1

and ๐‘Ž 0

๐‘› ๐‘ฆ 2 ๐‘‘๐‘ฅ๐‘›^

๐‘›โˆ’ 1 ๐‘ฆ 2 ๐‘‘๐‘ฅ๐‘›โˆ’^1

LINEAR COMBINATION OF FUNCTIONS ๐‘Ž 0

๐‘› ๐‘ฆ ๐‘‘๐‘ฅ ๐‘›

๐‘›โˆ’ 1 ๐‘ฆ ๐‘‘๐‘ฅ ๐‘›โˆ’ 1

Since ๐‘ฆ 1 and ๐‘ฆ 2 are solutions, then ๐‘Ž 0 ๐‘‘๐‘›๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›^

๐‘‘๐‘›โˆ’^1 ๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›โˆ’^1

and ๐‘Ž 0

๐‘› ๐‘ฆ 2 ๐‘‘๐‘ฅ ๐‘›

๐‘›โˆ’ 1 ๐‘ฆ 2 ๐‘‘๐‘ฅ ๐‘›โˆ’ 1

Multiply the first equation above by ๐‘ 1 and the second by ๐‘ 2 then add and re-group the two resulting equations. ๐‘Ž 0 ๐‘ 1

๐‘› ๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›^

๐‘› ๐‘ฆ 2 ๐‘‘๐‘ฅ๐‘›^

๐‘›โˆ’ 1 ๐‘ฆ 1 ๐‘‘๐‘ฅ๐‘›โˆ’^1

๐‘›โˆ’ 1 ๐‘ฆ 2 ๐‘‘๐‘ฅ๐‘›โˆ’^1

LINEAR INDEPENDENCE OF FUNCTIONS

โ€œIf

then the functions y

1

, y

2

, โ€ฆ, y

n

are said to be linearly independent, otherwise linearly

dependent. The determinant W is known as the Wronskian.โ€

LINEAR INDEPENDENCE OF FUNCTIONS

Example : Consider the functions ๐‘ฆ 1 = cos 2๐‘ฅ , ๐‘ฆ 2 = sin 2๐‘ฅ , and ๐‘ฆ 3 = cos 2๐‘ฅ +

๐œ‹ 3

and prove that

they are linearly dependent.

โ€ฒ ๐‘ฆ 2 โ€ฒ โ€ฆ ๐‘ฆ๐‘› โ€ฒ ๐‘ฆ 1 โ€ฒโ€ฒ ๐‘ฆ 2 โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘› โ€ฒโ€ฒ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘ฆ 1 (๐‘›โˆ’ 1 ) ๐‘ฆ 2 (๐‘›โˆ’ 1 ) โ€ฆ ๐‘ฆ๐‘› (๐‘›โˆ’ 1 )

cos 2 ๐‘ฅ sin 2 ๐‘ฅ cos 2 ๐‘ฅ +

โˆ’ 2 sin 2 ๐‘ฅ 2 cos 2 x โˆ’ 2 sin 2 ๐‘ฅ +

โˆ’ 4 cos 2 ๐‘ฅ โˆ’ 4 sin 2 ๐‘ฅ โˆ’ 4 cos 2 ๐‘ฅ +

LINEAR INDEPENDENCE OF FUNCTIONS

Example : Show that the the functions ๐‘ฆ 1 = 1 , ๐‘ฆ 2 = ๐‘ฅ , and ๐‘ฆ 3 = ๐‘ฅ

2

are linearly independent in all

intervals.

โ€ฒ ๐‘ฆ 2 โ€ฒ โ€ฆ ๐‘ฆ๐‘› โ€ฒ ๐‘ฆ 1 โ€ฒโ€ฒ ๐‘ฆ 2 โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘› โ€ฒโ€ฒ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘ฆ 1 (๐‘›โˆ’ 1 ) ๐‘ฆ 2 (๐‘›โˆ’ 1 ) โ€ฆ ๐‘ฆ๐‘› (๐‘›โˆ’ 1 )

2 0 1 2 ๐‘ฅ 0 0 2 ๐‘Š =

2 1 ๐‘ฅ 0 1 2 ๐‘ฅ 0 1 0 0 2 0 0 ๐‘Š = 2 + 0 + 0 โˆ’ 0 + 0 + 0 ๐‘Š = 2 Hence, functions y1, y2, & y 3 are linearly independent.

DIFFERENTIAL OPERATOR, D

The concept of the differential operator D, a symbol used extensively in the solution of linear equations

of higher order, is here presented:

a. D denotes the operation of differentiation with respect to the independent variable, say x, that is ๐ท =

๐‘‘ ๐‘‘๐‘ฅ

EXAMPLES:

  1. D 2 x 3 = 6 x 2
  2. D x ln x = 1 + ln x
  3. D e โˆ’ 2 x = โˆ’ 2 e โˆ’ 2 x
  4. D x 2 + cos 3 x โˆ’ ln x = 2 x โˆ’ 3 sin 3 x โˆ’ 1 x

b. D

r

indicates the number of r times the function should be differentiated relative to the independent

variable.

EXAMPLES:

  1. D 2 2 x 3 = 12 x
  2. D 0 x ln x = x ln x
  3. D 4 e โˆ’ 2 x = 16 e โˆ’ 2 x
  4. D 3 x 2 + cos 3 x โˆ’ ln x = 27 sin 3 x โˆ’ 2 x^3