Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Lesson 13 - Other Indeterminate Forms, Slides of Calculus for Engineers

0×∞ forms ∞-∞ forms 0^0, 1^∞, ∞^0 cases Logarithmic transformation Exponential growth comparisons

Typology: Slides

2024/2025

Available from 06/04/2025

imwinter
imwinter 🇵🇭

5

(1)

148 documents

1 / 17

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Lesson 2
Other Indeterminate
Forms
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Lesson 13 - Other Indeterminate Forms and more Slides Calculus for Engineers in PDF only on Docsity!

Lesson 2

Other Indeterminate

Forms

  • to define and enumerate other

indeterminate forms (secondary forms) of

functions;

  • to reduce secondary forms to primary

forms;

  • to apply the theorems on differentiation in

evaluating limits of indeterminate forms of

functions using L’Hopital’s Rule.

OBJECTIVES:

The INDETERMINATE FORMS 0 • ∞ and ∞ - ∞

( ) ( ) ( )

[ ( ) ( )]

[ ( ) ( )] ( ) ( )

Then apply L' Hopital' s Rule.

or.

0

0 equivalent quotient whoselimit whenevaluated may resultto

Thelimit could beevaluated bytrnasforming thedifferenceintoan

That is lim f x g x lim f x - lim g x -.

thenlim f x g x is said tobeindeterminateof the form -.

B. If lim f x , and lim g x whichareboth positive , thenthe

x a x a x a

x a

x a x a

⇒ − = =∞ ∞

− ∞ ∞

=∞ =∞

→ → →

→ →

.

∞ The INDETERMINATE FORMS 0 ,∞ ,and 1

0 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) (^) [ ( )]

( )

for the function,thenapplythe propertiesof logarithmand then LHR.

Theseindeterminate formsmaybeevaluated byletting avariable y

assumed the indeterminate forms 0 , , 1 ,respectively.

or as xapproaches or - thentheexpressionlim f x

lim f x 1 , and lim g x

lim f x , and lim g x 0 , or

lim f x 0 , and lim g x 0 , or

Giventwo functions f x and g x ,and if :

Defininition :

0 0

g x

x a

x a x a

x a x a

x a x a

→ →

→ →

→ →

+∞ ∞

  • = = ∞
  • = ∞ =
  • = =
  1. lim.^ [ x lnx] x→ 0

[ ] (^) = ( ) (^) = ( (^) −∞) →

lim x lnx 0 ln 0 0 x 0

[ ] ∞

−∞ = = = → →

0

1

ln 0

x

1

lnx lim x lnx lim

Transformingthegiven function toanequivalent function

x 0 x 0

lim [ x lnx] 0 x 0

[ ]

lim( x) 0

x

x

lim

x

dx

d

lnx dx

d

lim

x

lnx lim

ApplyLHR

x 0

2

x 0 x 0 x 0

→ → → →

. (^)  

  

− → (^) x 1

1

lnx

1

  1. lim x 1

= − =∞− ∞ −

= −  

  

− → (^0)

1

0

1

1 1

1

ln 1

1

x 1

1

lnx

1 lim x 1

0

0

(1-1)ln 1

( 1 1 ) ln 1

(x-1)lnx

(x 1 ) lnx lim x 1

1

lnx

1 lim

Trnsformingtoasimple fraction

x 1 x 1

=

− −

− −

 

  

− → →

[ ]
[ ] ( ) ( 1 ) (ln x)( 1 )

x

1 x 1

( 1 ) x

1 1

lim

(x-1)lnx dx

d

(x 1 ) lnx dx

d

lim x 1

1

lnx

1 lim

Apply LHR

x 1 x 1 x 1 ^ + 

  

 −

 

  

 −

=

− −

 

  

− → → →

0

0

1 1 1

1 1

1

= − +

⇒ → ( )ln(1)

x

x- 1 xlnx

x

x- 1

lim x

.

= − = − = ∞ ∞  

 

 − →

x x sec x (sec )

1 lim x 2 0

1

0

1

0 0

1

0

1

2

1

0 2

0

0

0

1 cos 2 ( 0 )

x

1 - cos2x lim x

cos 2 x

x

1 lim x sec 2 x

1

x

1 lim

Trnsforming totheequivalent function

x 0 2 2 x 0 2 2 x 0 2

=

 

 

 

 

 = −  

 

 − → → →

 

 

 − x→ (^) x sec 2 x

1

x

1

  1. lim 2 2 0

.

[ ]

[ ]

( )( )

sin 2 ( 0 )

2 x

sin 2 x 2 lim

x dx

d

1 - cos2x dx

d

lim x

1 - cos2x lim

Apply LHR

x 0 2 x 0 2 x 0

→ → →

( )

( )

( )

( ) lim 2 cos 2 x 2 cos 0 2 1

cos 2 x ( 2 )( 1 ) lim

x dx

d

sin 2 x dx

d

lim x

sin 2 x lim

ApplyLHRagain

x 0 x 0 x 0 x 0

→ → → →

x sec 2 x

x

lim

2 2 x 0

. x^1

1

x 1

  1. lim(x)

→ +

− −^ ∞ →

= = =

lim (x) ( 1 ) ( 1 )^0 ( 1 )

1 1 1

1 x 1

1

x 1

x 1

1

Let y =(x) −

x 1

lnx lnx x 1

1 ln y ln(x)x^1

1

= −

= − =

0

0

1 1

ln 1

x 1

lnx limlny lim

Applyingthelimitonbothsidesasx 1

x 1 x 1

= −

= −

=

→+^ → +

1

1

x

1 lim 1

1 x

1

lim

x 1 dx

d

lnx dx

d

lim x 1

lnx lim

ApplyLHRontherightmember

x 1 x 1 x 1 x 1

= = =

= − →+^ →+ →+ →+

.

( )

lim ( )x e 2. 71

lim y e but y x

limlny 1 ,taketheinverse functionof bothsides x 1

lnx lim

Thus

x 1

1

x 1

x 1

1 1

x 1

x 1 x 1

− →

− →

→ →

2

2

x 0 x 0 x 0

x
( csc x)( 1 )
cotx
lim
x
dx
d
(lncotx)
dx
d
lim
x
lncotx
lim
ApplyLHRonrightmember

→ +^ → + → +

2 sinxcos x

2 x lim

x

1

sinxcosx

1

lim

x

1

sin x

1

cosx

sinx

lim

2

x 0 2

x 0 2

2

x (^0) ⋅

=

 

  

= → +^ → + → +

0

0

sin( 0 )

2 ( 0 )

sin 2 x

2 x lim

2

x 0

= = = → +

cos 2 x

2 x

lim

(cos 2 x)( 2 )

4 x

lim

(sin 2 x)

dx

d

( 2 x )

dx

d

lim

sin 2 x

2 x

lim

ApplyLHRagain

x 0 x 0

2

x 0

2

x → 0 +^ → + → + → +

= = = 0 1

0

cos( 0 )

2 ( 0 ) = = =

Since y ( cot x) then lim(cot x) 1

lim y e 1

lim lny 0 , taketehinverse function of bothsides

x

lncotx

lim

Hence

x

x 0

x

0

x 0

x 0 x 0

→ →