









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
0×∞ forms ∞-∞ forms 0^0, 1^∞, ∞^0 cases Logarithmic transformation Exponential growth comparisons
Typology: Slides
1 / 17
This page cannot be seen from the preview
Don't miss anything!
( ) ( ) ( )
[ ( ) ( )]
[ ( ) ( )] ( ) ( )
Then apply L' Hopital' s Rule.
or.
0
0 equivalent quotient whoselimit whenevaluated may resultto
Thelimit could beevaluated bytrnasforming thedifferenceintoan
That is lim f x g x lim f x - lim g x -.
thenlim f x g x is said tobeindeterminateof the form -.
B. If lim f x , and lim g x whichareboth positive , thenthe
x a x a x a
x a
x a x a
∞
∞
⇒ − = =∞ ∞
− ∞ ∞
=∞ =∞
→ → →
→
→ →
.
∞ The INDETERMINATE FORMS 0 ,∞ ,and 1
0 0
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) (^) [ ( )]
( )
for the function,thenapplythe propertiesof logarithmand then LHR.
Theseindeterminate formsmaybeevaluated byletting avariable y
assumed the indeterminate forms 0 , , 1 ,respectively.
or as xapproaches or - thentheexpressionlim f x
lim f x 1 , and lim g x
lim f x , and lim g x 0 , or
lim f x 0 , and lim g x 0 , or
Giventwo functions f x and g x ,and if :
Defininition :
0 0
g x
x a
x a x a
x a x a
x a x a
∞
→
→ →
→ →
→ →
∞
+∞ ∞
[ ] (^) = ( ) (^) = ( (^) −∞) →
lim x lnx 0 ln 0 0 x 0
[ ] ∞
−∞ = = = → →
0
1
ln 0
x
1
lnx lim x lnx lim
Transformingthegiven function toanequivalent function
x 0 x 0
lim [ x lnx] 0 x 0
→
[ ]
lim( x) 0
x
x
lim
x
dx
d
lnx dx
d
lim
x
lnx lim
ApplyLHR
x 0
2
x 0 x 0 x 0
→ → → →
. (^)
−
− → (^) x 1
1
lnx
1
= − =∞− ∞ −
= −
−
− → (^0)
1
0
1
1 1
1
ln 1
1
x 1
1
lnx
1 lim x 1
0
0
(1-1)ln 1
( 1 1 ) ln 1
(x-1)lnx
(x 1 ) lnx lim x 1
1
lnx
1 lim
Trnsformingtoasimple fraction
x 1 x 1
=
−
− → →
x
1 x 1
( 1 ) x
1 1
lim
(x-1)lnx dx
d
(x 1 ) lnx dx
d
lim x 1
1
lnx
1 lim
Apply LHR
x 1 x 1 x 1 ^ +
−
−
=
−
− → → →
0
0
1 1 1
1 1
1
= − +
⇒ → ( )ln(1)
x
x- 1 xlnx
x
x- 1
lim x
.
= − = − = ∞ ∞
− →
x x sec x (sec )
1 lim x 2 0
1
0
1
0 0
1
0
1
2
1
0 2
0
0
0
1 cos 2 ( 0 )
x
1 - cos2x lim x
cos 2 x
x
1 lim x sec 2 x
1
x
1 lim
Trnsforming totheequivalent function
x 0 2 2 x 0 2 2 x 0 2
=
= −
− → → →
− x→ (^) x sec 2 x
1
x
1
.
[ ]
[ ]
( )( )
sin 2 ( 0 )
2 x
sin 2 x 2 lim
x dx
d
1 - cos2x dx
d
lim x
1 - cos2x lim
Apply LHR
x 0 2 x 0 2 x 0
→ → →
( )
( )
( )
( ) lim 2 cos 2 x 2 cos 0 2 1
cos 2 x ( 2 )( 1 ) lim
x dx
d
sin 2 x dx
d
lim x
sin 2 x lim
ApplyLHRagain
x 0 x 0 x 0 x 0
→ → → →
2 2 x 0
→
. x^1
1
x 1
−
→ +
− −^ ∞ →
= = =
lim (x) ( 1 ) ( 1 )^0 ( 1 )
1 1 1
1 x 1
1
x 1
x 1
1
Let y =(x) −
x 1
lnx lnx x 1
1 ln y ln(x)x^1
1
−
= −
= − =
0
0
1 1
ln 1
x 1
lnx limlny lim
Applyingthelimitonbothsidesasx 1
x 1 x 1
= −
= −
=
→
→+^ → +
1
1
x
1 lim 1
1 x
1
lim
x 1 dx
d
lnx dx
d
lim x 1
lnx lim
ApplyLHRontherightmember
x 1 x 1 x 1 x 1
= = =
−
= − →+^ →+ →+ →+
.
( )
lim ( )x e 2. 71
lim y e but y x
limlny 1 ,taketheinverse functionof bothsides x 1
lnx lim
Thus
x 1
1
x 1
x 1
1 1
x 1
x 1 x 1
− →
− →
→ →
2
2
x 0 x 0 x 0
→ +^ → + → +
2 sinxcos x
2 x lim
x
1
sinxcosx
1
lim
x
1
sin x
1
cosx
sinx
lim
2
x 0 2
x 0 2
2
x (^0) ⋅
−
=
−
= → +^ → + → +
0
0
sin( 0 )
2 ( 0 )
sin 2 x
2 x lim
2
x 0
= = = → +
x 0 x 0
2
x 0
2
x → 0 +^ → + → + → +
= = = 0 1
0
cos( 0 )
2 ( 0 ) = = =
x
x 0
x
0
x 0
x 0 x 0
→
→
→ →