








Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
L'Hôpital's Rule 0/0 forms ∞/∞ forms Algebraic manipulation techniques Graphical analysis
Typology: Slides
1 / 14
This page cannot be seen from the preview
Don't miss anything!
.
To evaluatethe said limit Theorems on L' Hopital' s Ruleis will be used.
longer be applied tothe second example.
Obviously,the principle applied inthe previous problems canno
0
0
0
sin( 0 )
2 ( 0 )
sin 2 ( 0 )
2x
sin 2x lim
2x
sin 2x Let usconsider evaluating the lim
x 0
x 0
= = = →
→
.
∞
0 0
.
.
y→ 0
y
0
( )
( )
( )
2 2
y 0 y 0 y 0
→ → →
1 y-sin3y
tany-3y lim y 0
∴ = →
.
( )
( )
2
4
x 4 x
ln sin2x
π
( )
( )
2 2 x 4
ln sin2 ln sin ln sin2x (^4 ) lim 4x 0 0 4 4
π →
π^ π = = = π − (^) π π −
( )
( )
( )
( )
2 ( 4 x)( 4 )
(cos 2 x) 2 sin2x
lim
4 x dx
d
ln sin2x dx
d
lim 4 x
ln sin2x lim
By LHR
4
(^2) x 4
x
2
4
x − −
π π π
( ) ( )
Thisisstillindetermin ate
0
0
80
2
2cot
4
8 4
4
2cot
8 4 x
2cot2x lim
4
x
−
=
− −
= − −
⇒ →
π
π π
π
π π
.
x
2
→+∞
( )
→ +∞ +∞ e e
x lim x
2
x
2
[ ]
[ ]
+∞ = = = +∞ →+∞ →+∞ →+∞ e
2
e ( 1 )
2x lim
e dx
d
x dx
d
lim e
x lim
By LHR
x x x
2
x x
2
x
x 2
2
2 2
2
x x
2
x x
2
x e d x
d
x d x
d
lim
e dx
d
x dx
d
lim e
x lim
Repeat LHR
→+∞ →+∞ → +∞
= =
[ ]
[ ]
0
2
e
2
e ( 1 )
2 ( 1 ) lim
e dx
d
2x dx
d
lim x x x x
= +∞
⇒ = = = = →+∞ →+∞ +∞
x
2
x
→+∞
. lntan 3x
lncos3x
6
x
π →
∞
= π
π
= π
π
= π →
ln
ln
2
lntan
2
lncos
lntan 3
6
lncos 3
lntan3x
lncos3x lim x
0
(^66)
ln ( ) 1 0
ln ( ∞) =∞
ln ( ) 0 =−∞
(sec 3 x) 3 tan 3 x
1
sin 3 x 3 cos3x
1
lim
lntan3x dx
d
lncos3x dx
d
lim lntan3x
lncos3x lim
Apply LHR
2 6
x 6
x 6
x
−
= = → → → π π π
2
(^2 )
2 x 2 x x (^6 6 6 )
sin 3x
-3tan3x tan 3x (^) cos 3x lim lim lim 1 sec 3x^1 3 sec 3x tan3x cos 3x
π π π → → →
⇒ = (^) − (^) = − (^)
( )
2 2
x 6
lim sin3x sin3 1 →π^6
π ⇒ = − (^) = −
x 6
ln cos 3x lim 1 →π ln tan 3x
Therefore = −